BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 29985422)

  • 1. The active site residues Gln55 and Arg73 play a key role in DNA damage bypass by S. cerevisiae Pol η.
    Boldinova EO; Ignatov A; Kulbachinskiy A; Makarova AV
    Sci Rep; 2018 Jul; 8(1):10314. PubMed ID: 29985422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of accessory proteins on the bypass of a cis-syn thymine-thymine dimer by Saccharomyces cerevisiae DNA polymerase eta.
    McCulloch SD; Wood A; Garg P; Burgers PM; Kunkel TA
    Biochemistry; 2007 Jul; 46(30):8888-96. PubMed ID: 17608453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical analysis of active site mutations of human polymerase η.
    Suarez SC; Beardslee RA; Toffton SM; McCulloch SD
    Mutat Res; 2013; 745-746():46-54. PubMed ID: 23499771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translesion synthesis by human DNA polymerase eta across thymine glycol lesions.
    Kusumoto R; Masutani C; Iwai S; Hanaoka F
    Biochemistry; 2002 May; 41(19):6090-9. PubMed ID: 11994004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta.
    Carlson KD; Washington MT
    Mol Cell Biol; 2005 Mar; 25(6):2169-76. PubMed ID: 15743815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae.
    Donigan KA; Cerritelli SM; McDonald JP; Vaisman A; Crouch RJ; Woodgate R
    DNA Repair (Amst); 2015 Nov; 35():1-12. PubMed ID: 26340535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical analysis of DNA polymerase η fidelity in the presence of replication protein A.
    Suarez SC; Toffton SM; McCulloch SD
    PLoS One; 2014; 9(5):e97382. PubMed ID: 24824831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The eukaryotic replisome tolerates leading-strand base damage by replicase switching.
    Guilliam TA; Yeeles JT
    EMBO J; 2021 Mar; 40(5):e107037. PubMed ID: 33555053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of lesion bypass by yeast and human DNA polymerase eta.
    Washington MT; Johnson RE; Prakash L; Prakash S
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8355-60. PubMed ID: 11459975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational specificity of gamma-radiation-induced guanine-thymine and thymine-guanine intrastrand cross-links in mammalian cells and translesion synthesis past the guanine-thymine lesion by human DNA polymerase eta.
    Colis LC; Raychaudhury P; Basu AK
    Biochemistry; 2008 Aug; 47(31):8070-9. PubMed ID: 18616294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specificity of DNA lesion bypass by the yeast DNA polymerase eta.
    Yuan F; Zhang Y; Rajpal DK; Wu X; Guo D; Wang M; Taylor JS; Wang Z
    J Biol Chem; 2000 Mar; 275(11):8233-9. PubMed ID: 10713149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCNA trimer instability inhibits translesion synthesis by DNA polymerase η and by DNA polymerase δ.
    Dieckman LM; Washington MT
    DNA Repair (Amst); 2013 May; 12(5):367-76. PubMed ID: 23506842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast pol eta holds a cis-syn thymine dimer loosely in the active site during elongation opposite the 3'-T of the dimer, but tightly opposite the 5'-T.
    Sun L; Zhang K; Zhou L; Hohler P; Kool ET; Yuan F; Wang Z; Taylor JS
    Biochemistry; 2003 Aug; 42(31):9431-7. PubMed ID: 12899630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of accurate translesion synthesis by human DNA polymerase eta.
    Masutani C; Kusumoto R; Iwai S; Hanaoka F
    EMBO J; 2000 Jun; 19(12):3100-9. PubMed ID: 10856253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human mitochondrial DNA polymerase γ exhibits potential for bypass and mutagenesis at UV-induced cyclobutane thymine dimers.
    Kasiviswanathan R; Gustafson MA; Copeland WC; Meyer JN
    J Biol Chem; 2012 Mar; 287(12):9222-9. PubMed ID: 22194617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of bypass of abasic site by the catalytic core of yeast DNA polymerase eta.
    Yang J; Wang R; Liu B; Xue Q; Zhong M; Zeng H; Zhang H
    Mutat Res; 2015 Sep; 779():134-43. PubMed ID: 26203649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases delta and eta.
    McCulloch SD; Kokoska RJ; Garg P; Burgers PM; Kunkel TA
    Nucleic Acids Res; 2009 May; 37(9):2830-40. PubMed ID: 19282446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NGS-based analysis of base-substitution signatures created by yeast DNA polymerase eta and zeta on undamaged and abasic DNA templates in vitro.
    Chen Y; Sugiyama T
    DNA Repair (Amst); 2017 Nov; 59():34-43. PubMed ID: 28946034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inefficient bypass of an abasic site by DNA polymerase eta.
    Haracska L; Washington MT; Prakash S; Prakash L
    J Biol Chem; 2001 Mar; 276(9):6861-6. PubMed ID: 11106652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast DNA polymerase zeta is an efficient extender of primer ends opposite from 7,8-dihydro-8-Oxoguanine and O6-methylguanine.
    Haracska L; Prakash S; Prakash L
    Mol Cell Biol; 2003 Feb; 23(4):1453-9. PubMed ID: 12556503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.