These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 29985608)

  • 1. Predicting Cotranscriptional Folding Kinetics For Riboswitch.
    Sun TT; Zhao C; Chen SJ
    J Phys Chem B; 2018 Aug; 122(30):7484-7496. PubMed ID: 29985608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The regulation mechanism of yitJ and metF riboswitches.
    Gong S; Wang Y; Zhang W
    J Chem Phys; 2015 Jul; 143(4):045103. PubMed ID: 26233166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.
    Uhm H; Kang W; Ha KS; Kang C; Hohng S
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cotranscriptional folding of a riboswitch at nucleotide resolution.
    Watters KE; Strobel EJ; Yu AM; Lis JT; Lucks JB
    Nat Struct Mol Biol; 2016 Dec; 23(12):1124-1131. PubMed ID: 27798597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.
    Lin JC; Yoon J; Hyeon C; Thirumalai D
    Methods Enzymol; 2015; 553():235-58. PubMed ID: 25726468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule force spectroscopy of the add adenine riboswitch relates folding to regulatory mechanism.
    Neupane K; Yu H; Foster DA; Wang F; Woodside MT
    Nucleic Acids Res; 2011 Sep; 39(17):7677-87. PubMed ID: 21653559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of cotranscriptional folding in an adenine riboswitch.
    Frieda KL; Block SM
    Science; 2012 Oct; 338(6105):397-400. PubMed ID: 23087247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-dependent folding landscapes of adenine riboswitch aptamers.
    Lin JC; Hyeon C; Thirumalai D
    Phys Chem Chem Phys; 2014 Apr; 16(14):6376-82. PubMed ID: 24366448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of hierarchical folding in single riboswitch aptamers.
    Greenleaf WJ; Frieda KL; Foster DA; Woodside MT; Block SM
    Science; 2008 Feb; 319(5863):630-3. PubMed ID: 18174398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch.
    Cheng L; White EN; Brandt NL; Yu AM; Chen AA; Lucks JB
    Nucleic Acids Res; 2022 Nov; 50(21):12001-12018. PubMed ID: 35348734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Landscape Zooming toward the Prediction of RNA Cotranscriptional Folding.
    Xu X; Jin L; Xie L; Chen SJ
    J Chem Theory Comput; 2022 Mar; 18(3):2002-2015. PubMed ID: 35133833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch.
    Perdrizet GA; Artsimovitch I; Furman R; Sosnick TR; Pan T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3323-8. PubMed ID: 22331895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative stability of helices determines the folding landscape of adenine riboswitch aptamers.
    Lin JC; Thirumalai D
    J Am Chem Soc; 2008 Oct; 130(43):14080-1. PubMed ID: 18828635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A ligand-gated strand displacement mechanism for ZTP riboswitch transcription control.
    Strobel EJ; Cheng L; Berman KE; Carlson PD; Lucks JB
    Nat Chem Biol; 2019 Nov; 15(11):1067-1076. PubMed ID: 31636437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.
    Aboul-ela F; Huang W; Abd Elrahman M; Boyapati V; Li P
    Wiley Interdiscip Rev RNA; 2015; 6(6):631-50. PubMed ID: 26361734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain.
    Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H
    RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition.
    St-Pierre P; Shaw E; Jacques S; Dalgarno PA; Perez-Gonzalez C; Picard-Jean F; Penedo JC; Lafontaine DA
    Nucleic Acids Res; 2021 Jun; 49(10):5891-5904. PubMed ID: 33963862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Methods for Modeling Aptamers and Designing Riboswitches.
    Gong S; Wang Y; Wang Z; Zhang W
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29149090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.