BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 29985785)

  • 1. Evaluating the use of a field-based silica monitoring approach with dust from copper mines.
    Cauda E; Chubb L; Reed R; Stepp R
    J Occup Environ Hyg; 2018 Oct; 15(10):732-742. PubMed ID: 29985785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-sectional silica exposure measurements at two Zambian copper mines of Nkana and Mufulira.
    Hayumbu P; Robins TG; Key-Schwartz R
    Int J Environ Res Public Health; 2008 Jun; 5(2):86-90. PubMed ID: 18678921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoting early exposure monitoring for respirable crystalline silica: Taking the laboratory to the mine site.
    Cauda E; Miller A; Drake P
    J Occup Environ Hyg; 2016; 13(3):D39-45. PubMed ID: 26558490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Calibration Method for the Quantification of Respirable Particles in Mining Scenarios Using Fourier Transform Infrared Spectroscopy.
    Stach R; Barone T; Cauda E; Mizaikoff B
    Appl Spectrosc; 2021 Mar; 75(3):307-316. PubMed ID: 33031006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating historical respirable crystalline silica exposures for Chinese pottery workers and iron/copper, tin, and tungsten miners.
    Zhuang Z; Hearl FJ; Odencrantz J; Chen W; Chen BT; Chen JQ; McCawley MA; Gao P; Soderholm SC
    Ann Occup Hyg; 2001 Nov; 45(8):631-42. PubMed ID: 11718659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Comparison of Four Portable FTIR Instruments for Direct-on-Filter Measurement of Respirable Crystalline Silica.
    Ashley EL; Cauda E; Chubb LG; Tuchman DP; Rubinstein EN
    Ann Work Expo Health; 2020 Jun; 64(5):536-546. PubMed ID: 32266371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying silica in filter-deposited mine dusts using infrared spectra and partial least squares regression.
    Weakley AT; Miller AL; Griffiths PR; Bayman SJ
    Anal Bioanal Chem; 2014 Jul; 406(19):4715-24. PubMed ID: 24830397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive assessment of exposures to respirable dust and silica in the taconite mining industry.
    Hwang J; Ramachandran G; Raynor PC; Alexander BH; Mandel JH
    J Occup Environ Hyg; 2017 May; 14(5):377-388. PubMed ID: 28388309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of respirable crystalline silica concentration measurements using a direct-on-filter Fourier transform infrared (FT-IR) transmission method vs. a traditional laboratory X-ray diffraction method.
    Hart JF; Autenrieth DA; Cauda E; Chubb L; Spear TM; Wock S; Rosenthal S
    J Occup Environ Hyg; 2018 Oct; 15(10):743-754. PubMed ID: 29985762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica exposure in a mining exploration operation.
    Arrandale VH; Kalenge S; Demers PA
    Arch Environ Occup Health; 2018; 73(6):351-354. PubMed ID: 29283843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Historical Worker Exposures to Respirable Dust from Talc Mining and Milling Operations in Vermont.
    Rossner A; Williams PRD; Mellas-Hulett E; Rahman MA
    Ann Work Expo Health; 2020 Apr; 64(4):416-429. PubMed ID: 32050017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicomponent Measurement of Respirable Quartz, Kaolinite and Coal Dust using Fourier Transform Infrared Spectroscopy (FTIR): A Comparison Between Partial Least Squares and Principal Component Regressions.
    Stacey P; Clegg F; Sammon C
    Ann Work Expo Health; 2022 Jun; 66(5):644-655. PubMed ID: 34595523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure profile of respirable crystalline silica in stone mines in India.
    Prajapati SS; Nandi SS; Deshmukh A; Dhatrak SV
    J Occup Environ Hyg; 2020; 17(11-12):531-537. PubMed ID: 32783703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respirable dust and crystalline silica exposure among different mining sectors in India.
    Prajapati SS; Mishra RA; Jhariya B; Dhatrak SV
    Arch Environ Occup Health; 2021; 76(7):455-461. PubMed ID: 33970811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring Worker Exposure to Respirable Crystalline Silica: Application for Data-driven Predictive Modeling for End-of-Shift Exposure Assessment.
    Wolfe C; Chubb L; Walker R; Yekich M; Cauda E
    Ann Work Expo Health; 2022 Oct; 66(8):1010-1021. PubMed ID: 35716068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of coal mine dust size distributions and calibration standards for crystalline silica analysis.
    Page SJ
    AIHA J (Fairfax, Va); 2003; 64(1):30-9. PubMed ID: 12570393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benefits and limitations of field-based monitoring approaches for respirable dust and crystalline silica applied in a sandstone quarry.
    Cauda E; Dolan E; Cecala A; Louk K; Yekich M; Chubb L; Lingenfelter A
    J Occup Environ Hyg; 2022 Dec; 19(12):730-741. PubMed ID: 36219680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a Fourier Transform Infrared (FTIR) Principal Component Regression (PCR) Chemometric Method for the Quantification of Respirable Crystalline Silica (Quartz), Kaolinite, and Coal in Coal Mine Dusts from Australia, UK, and South Africa.
    Stacey P; Clegg F; Rhyder G; Sammon C
    Ann Work Expo Health; 2022 Jul; 66(6):781-793. PubMed ID: 35088072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elemental properties of copper slag and measured airborne exposures at a copper slag processing facility.
    Mugford C; Gibbs JL; Boylstein R
    J Occup Environ Hyg; 2017 Aug; 14(8):D120-D129. PubMed ID: 28506182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occupational exposure to crystalline silica at Alberta work sites.
    Radnoff D; Todor MS; Beach J
    J Occup Environ Hyg; 2014; 11(9):557-70. PubMed ID: 24479465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.