BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 29985785)

  • 21. Occupational exposure to crystalline silica at Alberta work sites.
    Radnoff D; Todor MS; Beach J
    J Occup Environ Hyg; 2014; 11(9):557-70. PubMed ID: 24479465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reconstructing historical exposures to elongate mineral particles (EMPs) in the taconite mining industry for 1955-2010.
    Shao Y; Hwang J; Alexander BH; Mandel JH; MacLehose RF; Ramachandran G
    J Occup Environ Hyg; 2019 Dec; 16(12):817-826. PubMed ID: 31647751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach.
    Grové T; Van Dyk T; Franken A; Du Plessis J
    J Occup Environ Hyg; 2014; 11(6):406-14. PubMed ID: 24380473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Respirable dust and respirable silica exposure in Ontario gold mines.
    Verma DK; Rajhans GS; Malik OP; des Tombe K
    J Occup Environ Hyg; 2014; 11(2):111-6. PubMed ID: 24369933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Respirable dust exposures in U.S. surface coal mines (1982-1986).
    Piacitelli GM; Amandus HE; Dieffenbach A
    Arch Environ Health; 1990; 45(4):202-9. PubMed ID: 2169228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of Occupational Exposures to Respirable Silica and Dust in Demolition, Crushing, and Chipping Activities.
    Bello A; Mugford C; Murray A; Shepherd S; Woskie SR
    Ann Work Expo Health; 2019 Jan; 63(1):34-44. PubMed ID: 30379992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulatory implications of airborne respirable free silica variability in underground coal mines.
    Villnave JM; Corn M; Francis M; Hall TA
    Am Ind Hyg Assoc J; 1991 Mar; 52(3):107-12. PubMed ID: 1851384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dust exposure during small-scale mining in Tanzania: a pilot study.
    Bratveit M; Moen BE; Mashalla YJ; Maalim H
    Ann Occup Hyg; 2003 Apr; 47(3):235-40. PubMed ID: 12639837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of respirable dust exposure among coal miners in South Africa.
    Naidoo R; Seixas N; Robins T
    J Occup Environ Hyg; 2006 Jun; 3(6):293-300. PubMed ID: 16621766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Occupational exposure to respirable crystalline silica among US metal and nonmetal miners, 2000-2019.
    Misra S; Sussell AL; Wilson SE; Poplin GS
    Am J Ind Med; 2023 Mar; 66(3):199-212. PubMed ID: 36705259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Field evaluation of an engineering control for respirable crystalline silica exposures during mortar removal.
    Collingwood S; Heitbrink WA
    J Occup Environ Hyg; 2007 Nov; 4(11):875-87. PubMed ID: 17917951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Historical total and respirable silica dust exposure levels in mines and pottery factories in China.
    Dosemeci M; McLaughlin JK; Chen JQ; Hearl F; Chen RG; McCawley M; Wu Z; Peng KL; Chen AL; Rexing SH
    Scand J Work Environ Health; 1995; 21 Suppl 2():39-43. PubMed ID: 8929687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples.
    Miller AL; Murphy NC; Bayman SJ; Briggs ZP; Kilpatrick AD; Quinn CA; Wadas MR; Cauda EG; Griffiths PR
    J Occup Environ Hyg; 2015; 12(7):421-30. PubMed ID: 25636081
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal Trends in Variability of Respirable Dust and Respirable Quartz Concentrations in the European Industrial Minerals Sector.
    Zilaout H; Houba R; Kromhout H
    Ann Work Expo Health; 2023 Mar; 67(3):392-401. PubMed ID: 36594971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of respirable coal mine dust (RCMD) and respirable crystalline silica (RCS) in the U.S. underground and surface coal mines.
    Rahimi E; Shekarian Y; Shekarian N; Roghanchi P
    Sci Rep; 2023 Jan; 13(1):1767. PubMed ID: 36720966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating portable infrared spectrometers for measuring the silica content of coal dust.
    Miller AL; Drake PL; Murphy NC; Noll JD; Volkwein JC
    J Environ Monit; 2012 Jan; 14(1):48-55. PubMed ID: 22130611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Replacement of filters for respirable quartz measurement in coal mine dust by infrared spectroscopy.
    Farcas D; Lee T; Chisholm WP; Soo JC; Harper M
    J Occup Environ Hyg; 2016; 13(2):D16-22. PubMed ID: 26375614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Respirable crystalline silica exposures during asphalt pavement milling at eleven highway construction sites.
    Hammond DR; Shulman SA; Echt AS
    J Occup Environ Hyg; 2016 Jul; 13(7):538-48. PubMed ID: 26913983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A critique of MSHA procedures for determination of permissible respirable coal mine dust containing free silica.
    Corn M; Breysse P; Hall T; Chen G; Risby T; Swift DL
    Am Ind Hyg Assoc J; 1985 Jan; 46(1):4-8. PubMed ID: 2992262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of respirable dust and its free silica contents in different Indian coalmines.
    Mukherjee AK; Bhattacharya SK; Saiyed HN
    Ind Health; 2005 Apr; 43(2):277-84. PubMed ID: 15895842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.