These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 29985832)
21. Evaluation of the default-mode network by quantitative Aoe J; Watabe T; Shimosegawa E; Kato H; Kanai Y; Naka S; Matsunaga K; Isohashi K; Tatsumi M; Hatazawa J Ann Nucl Med; 2018 Aug; 32(7):485-491. PubMed ID: 29934675 [TBL] [Abstract][Full Text] [Related]
22. Noninvasive method for measurement of cerebral blood flow using O-15 water PET/MRI with ASL correlation. Okazawa H; Higashino Y; Tsujikawa T; Arishima H; Mori T; Kiyono Y; Kimura H; Kikuta KI Eur J Radiol; 2018 Aug; 105():102-109. PubMed ID: 30017265 [TBL] [Abstract][Full Text] [Related]
23. Applicability of emission-based attenuation map for rapid CBF, OEF, and CMRO2 measurements using gaseous (15)O-labeled compounds. Maeda Y; Kudomi N; Sasakawa Y; Monden T; Kato K; Yamamoto Y; Kawai N; Nishiyama Y EJNMMI Phys; 2015 Dec; 2(1):12. PubMed ID: 26501813 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of dynamic row-action maximum likelihood algorithm reconstruction for quantitative 15O brain PET. Ibaraki M; Sato K; Mizuta T; Kitamura K; Miura S; Sugawara S; Shinohara Y; Kinoshita T Ann Nucl Med; 2009 Sep; 23(7):627-38. PubMed ID: 19562437 [TBL] [Abstract][Full Text] [Related]
25. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT). Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275 [TBL] [Abstract][Full Text] [Related]
26. Influence of residual oxygen-15-labeled carbon monoxide radioactivity on cerebral blood flow and oxygen extraction fraction in a dual-tracer autoradiographic method. Iwanishi K; Watabe H; Hayashi T; Miyake Y; Minato K; Iida H Ann Nucl Med; 2009 Jun; 23(4):363-71. PubMed ID: 19360455 [TBL] [Abstract][Full Text] [Related]
27. Impact of missing attenuation and scatter corrections on Botta F; Ferrari M; Chiesa C; Vitali S; Guerriero F; Nile MC; Mira M; Lorenzon L; Pacilio M; Cremonesi M Med Phys; 2018 Apr; 45(4):1684-1698. PubMed ID: 29383733 [TBL] [Abstract][Full Text] [Related]
28. Analytically based photon scatter modeling for a multipinhole cardiac SPECT camera. Pourmoghaddas A; Wells RG Med Phys; 2016 Nov; 43(11):6098. PubMed ID: 27806581 [TBL] [Abstract][Full Text] [Related]
29. Reconstruction of input functions from a dynamic PET image with sequential administration of Kudomi N; Maeda Y; Yamamoto H; Yamamoto Y; Hatakeyama T; Nishiyama Y J Cereb Blood Flow Metab; 2018 May; 38(5):780-792. PubMed ID: 28595496 [TBL] [Abstract][Full Text] [Related]
30. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments. Pourmoghaddas A; Wells RG Med Phys; 2016 Jan; 43(1):44. PubMed ID: 26745898 [TBL] [Abstract][Full Text] [Related]
31. Scatter correction for large non-human primate brain imaging using microPET. Naidoo-Variawa S; Lehnert W; Banati RB; Meikle SR Phys Med Biol; 2011 Apr; 56(7):2131-43. PubMed ID: 21389357 [TBL] [Abstract][Full Text] [Related]
32. Time efficient scatter correction for time-of-flight PET: the immediate scatter approximation. Nikulin P; Maus J; Hofheinz F; Lougovski A; van den Hoff J Phys Med Biol; 2019 Mar; 64(7):075005. PubMed ID: 30856617 [TBL] [Abstract][Full Text] [Related]
33. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Ito H; Kanno I; Kato C; Sasaki T; Ishii K; Ouchi Y; Iida A; Okazawa H; Hayashida K; Tsuyuguchi N; Ishii K; Kuwabara Y; Senda M Eur J Nucl Med Mol Imaging; 2004 May; 31(5):635-43. PubMed ID: 14730405 [TBL] [Abstract][Full Text] [Related]
34. Impact of scatter correction on D2 receptor occupancy measurements using 123I-IBZM SPECT: comparison to 11C-Raclopride PET. Bullich S; Cot A; Gallego J; Gunn RN; Suárez M; Pavía J; Ros D; Laruelle M; Catafau AM Neuroimage; 2010 May; 50(4):1511-8. PubMed ID: 20083205 [TBL] [Abstract][Full Text] [Related]
35. Modeling approach to eliminate the need to separate arterial plasma in oxygen-15 inhalation positron emission tomography. Iida H; Jones T; Miura S J Nucl Med; 1993 Aug; 34(8):1333-40. PubMed ID: 8326395 [TBL] [Abstract][Full Text] [Related]
36. In-vivo positron emission tomography (PET) measurement of cerebral oxygen metabolism in small animals. Temma T Yakugaku Zasshi; 2008 Sep; 128(9):1267-73. PubMed ID: 18758140 [TBL] [Abstract][Full Text] [Related]
39. Sequential PET estimation of cerebral oxygen metabolism with spontaneous respiration of Temma T; Yamazaki M; Miyanohara J; Shirakawa H; Kondo N; Koshino K; Kaneko S; Iida H J Cereb Blood Flow Metab; 2017 Oct; 37(10):3334-3343. PubMed ID: 28178896 [TBL] [Abstract][Full Text] [Related]
40. An analytical scatter correction for singles-mode transmission data in PET. Vandervoort E; Sossi V IEEE Trans Med Imaging; 2008 Mar; 27(3):402-12. PubMed ID: 18334435 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]