These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 29986160)

  • 21. Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control.
    Schweighofer N; Doya K; Lay F
    Neuroscience; 2001; 103(1):35-50. PubMed ID: 11311786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification models of the nervous system.
    Zipser D
    Neuroscience; 1992; 47(4):853-62. PubMed ID: 1579214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit.
    Sawtell NB
    Neuron; 2010 May; 66(4):573-84. PubMed ID: 20510861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diversity and dynamism in the cerebellum.
    De Zeeuw CI; Lisberger SG; Raymond JL
    Nat Neurosci; 2021 Feb; 24(2):160-167. PubMed ID: 33288911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.
    Gardner B; Grüning A
    PLoS One; 2016; 11(8):e0161335. PubMed ID: 27532262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Saccade control in a simulated robot camera-head system: neural net architectures for efficient learning of inverse kinematics.
    Dean P; Mayhew JE; Thacker N; Langdon PM
    Biol Cybern; 1991; 66(1):27-36. PubMed ID: 1768710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oscillations, Timing, Plasticity, and Learning in the Cerebellum.
    Cheron G; Márquez-Ruiz J; Dan B
    Cerebellum; 2016 Apr; 15(2):122-38. PubMed ID: 25808751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning.
    D'Angelo E; Mapelli L; Casellato C; Garrido JA; Luque N; Monaco J; Prestori F; Pedrocchi A; Ros E
    Cerebellum; 2016 Apr; 15(2):139-51. PubMed ID: 26304953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine Learning Capabilities of a Simulated Cerebellum.
    Hausknecht M; Li WK; Mauk M; Stone P
    IEEE Trans Neural Netw Learn Syst; 2017 Mar; 28(3):510-522. PubMed ID: 26829807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cerebellar circuitry as a neuronal machine.
    Ito M
    Prog Neurobiol; 2006; 78(3-5):272-303. PubMed ID: 16759785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses.
    Nishitani Y; Kaneko Y; Ueda M
    IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):2999-3008. PubMed ID: 26595417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visual awareness and the cerebellum: possible role of decorrelation control.
    Dean P; Porrill J; Stone JV
    Prog Brain Res; 2004; 144():61-75. PubMed ID: 14650840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An online supervised learning method based on gradient descent for spiking neurons.
    Xu Y; Yang J; Zhong S
    Neural Netw; 2017 Sep; 93():7-20. PubMed ID: 28525811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Normalization of input patterns in an associative network.
    Liu A; Regehr WG
    J Neurophysiol; 2014 Feb; 111(3):544-51. PubMed ID: 24225543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An STDP training algorithm for a spiking neural network with dynamic threshold neurons.
    Strain TJ; McDaid LJ; McGinnity TM; Maguire LP; Sayers HM
    Int J Neural Syst; 2010 Dec; 20(6):463-80. PubMed ID: 21117270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit.
    Yamazaki T; Igarashi J
    Neural Netw; 2013 Nov; 47():103-11. PubMed ID: 23434303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction signals in the cerebellum: beyond supervised motor learning.
    Hull C
    Elife; 2020 Mar; 9():. PubMed ID: 32223891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computer simulation of cerebellar information processing.
    Medina JF; Mauk MD
    Nat Neurosci; 2000 Nov; 3 Suppl():1205-11. PubMed ID: 11127839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.