These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29986246)

  • 21. Theoretical framework for designing a desalination plant based on membrane capacitive deionization.
    Wang L; Lin S
    Water Res; 2019 Jul; 158():359-369. PubMed ID: 31055016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption.
    Yao Q; Shi Z; Liu Q; Gu Z; Ning R
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3313-3319. PubMed ID: 29149445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI).
    Tang W; He D; Zhang C; Waite TD
    Water Res; 2017 Sep; 121():302-310. PubMed ID: 28558281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlinear dynamics of capacitive charging and desalination by porous electrodes.
    Biesheuvel PM; Bazant MZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031502. PubMed ID: 20365735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complementary surface charge for enhanced capacitive deionization.
    Gao X; Porada S; Omosebi A; Liu KL; Biesheuvel PM; Landon J
    Water Res; 2016 Apr; 92():275-82. PubMed ID: 26878361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sustainable Desalination by 3:1 Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TiONTs) Composite via Capacitive Deionization at Different Sodium Chloride Concentrations.
    Lazarte JPL; Bautista-Patacsil L; Eusebio RCP; Orbecido AH; Doong RA
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31540150
    [TBL] [Abstract][Full Text] [Related]  

  • 27. pH Dependence of Phosphorus Speciation and Transport in Flow-Electrode Capacitive Deionization.
    Bian Y; Chen X; Ren ZJ
    Environ Sci Technol; 2020 Jul; 54(14):9116-9123. PubMed ID: 32584558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane-Current Collector-Based Flow-Electrode Capacitive Deionization System: A Novel Stack Configuration for Scale-Up Desalination.
    Xu L; Mao Y; Zong Y; Peng S; Zhang X; Wu D
    Environ Sci Technol; 2021 Oct; 55(19):13286-13296. PubMed ID: 34529405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology.
    Xu P; Drewes JE; Heil D; Wang G
    Water Res; 2008 May; 42(10-11):2605-17. PubMed ID: 18258278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theory of water treatment by capacitive deionization with redox active porous electrodes.
    He F; Biesheuvel PM; Bazant MZ; Hatton TA
    Water Res; 2018 Apr; 132():282-291. PubMed ID: 29331915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resistance identification and rational process design in Capacitive Deionization.
    Dykstra JE; Zhao R; Biesheuvel PM; van der Wal A
    Water Res; 2016 Jan; 88():358-370. PubMed ID: 26512814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scale-up desalination: Membrane-current collector assembly in flow-electrode capacitive deionization system.
    Xu L; Mao Y; Zong Y; Wu D
    Water Res; 2021 Feb; 190():116782. PubMed ID: 33387952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination.
    Zhang C; Wu L; Ma J; Pham AN; Wang M; Waite TD
    Environ Sci Technol; 2019 Nov; 53(22):13364-13373. PubMed ID: 31657549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic reversible cycles of electrochemical desalination with intercalation materials in symmetric and asymmetric configurations.
    Wang R; Lin S
    J Colloid Interface Sci; 2020 Aug; 574():152-161. PubMed ID: 32311537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization.
    Tang W; Kovalsky P; Cao B; Waite TD
    Water Res; 2016 Aug; 99():112-121. PubMed ID: 27151285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing Performance of Capacitive Deionization with Polyelectrolyte-Infiltrated Electrodes: Theory and Experimental Validation.
    Wang L; Liang Y; Zhang L
    Environ Sci Technol; 2020 May; 54(9):5874-5883. PubMed ID: 32216292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Treatment of industrial brine using capacitive deionization (CDI) towards zero liquid discharge - challenges and optimization.
    Liu E; Lee LY; Ong SL; Ng HY
    Water Res; 2020 Sep; 183():116059. PubMed ID: 32721705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes.
    Tang W; He D; Zhang C; Kovalsky P; Waite TD
    Water Res; 2017 Sep; 120():229-237. PubMed ID: 28500988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective adsorption of nitrate over chloride in microporous carbons.
    Mubita TM; Dykstra JE; Biesheuvel PM; van der Wal A; Porada S
    Water Res; 2019 Nov; 164():114885. PubMed ID: 31426005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.