These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29986383)

  • 1. Photocatalytic Oxidation of VOCs in Gas Phase Using Capillary Microreactors with Commercial TiO₂ (P25) Fillings.
    Fernández-Catalá J; Berenguer-Murcia Á; Cazorla-Amorós D
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29986383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of TiO₂ with Hierarchical Porosity for the Photooxidation of Propene.
    Fernández-Catalá J; Cano-Casanova L; Lillo-Ródenas MÁ; Berenguer-Murcia Á; Cazorla-Amorós D
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29258171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TiO₂ Modification with Transition Metallic Species (Cr, Co, Ni, and Cu) for Photocatalytic Abatement of Acetic Acid in Liquid Phase and Propene in Gas Phase.
    Amorós-Pérez A; Cano-Casanova L; Castillo-Deltell A; Lillo-Ródenas MÁ; Román-Martínez MDC
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30583575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of clay--TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant.
    Kibanova D; Cervini-Silva J; Destaillats H
    Environ Sci Technol; 2009 Mar; 43(5):1500-6. PubMed ID: 19350926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the Preparation Method (Sol-Gel or Hydrothermal) and Conditions on the TiO₂ Properties and Activity for Propene Oxidation.
    Cano-Casanova L; Amorós-Pérez A; Lillo-Ródenas MÁ; Román-Martínez MDC
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removing volatile organic compounds in cooking fume by nano-sized TiO
    Li YH; Cheng SW; Yuan CS; Lai TF; Hung CH
    Chemosphere; 2018 Oct; 208():808-817. PubMed ID: 29906755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres.
    Xiang Q; Yu J; Cheng B; Ong HC
    Chem Asian J; 2010 Jun; 5(6):1466-74. PubMed ID: 20432429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple template-free approach to TiO2 hollow spheres with enhanced photocatalytic activity.
    Yu J; Zhang J
    Dalton Trans; 2010 Jul; 39(25):5860-7. PubMed ID: 20505884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of support characteristics and preparation method on photocatalytic activity of TiO
    Radwan EK; Langford CH; Achari G
    R Soc Open Sci; 2018 Sep; 5(9):180918. PubMed ID: 30839734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of air photocatalytic purification using a total hazard index: Effect of the composite TiO
    Kovalevskiy NS; Lyulyukin MN; Selishchev DS; Kozlov DV
    J Hazard Mater; 2018 Sep; 358():302-309. PubMed ID: 29990818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient photocatalytic oxidation of gaseous toluene in a bubbling reactor of water.
    Liu B; Zhan Y; Xie R; Huang H; Li K; Zeng Y; Shrestha RP; Kim Oanh NT; Winijkul E
    Chemosphere; 2019 Oct; 233():754-761. PubMed ID: 31200135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic activity of surface fluorinated TiO2-P25 in the degradation of Reactive Orange 4.
    Vijayabalan A; Selvam K; Velmurugan R; Swaminathan M
    J Hazard Mater; 2009 Dec; 172(2-3):914-21. PubMed ID: 19733965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel.
    Yu J; Ma T; Liu S
    Phys Chem Chem Phys; 2011 Feb; 13(8):3491-501. PubMed ID: 21173966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic oxidation of toluene and isopropanol by LaFeO
    Lee YE; Chung WC; Chang MB
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20908-20919. PubMed ID: 31115812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review.
    Zou W; Gao B; Ok YS; Dong L
    Chemosphere; 2019 Mar; 218():845-859. PubMed ID: 30508803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of ultraviolet light-emitting diode photocatalysis to remove volatile organic compounds from indoor air.
    Sharmin R; Ray MB
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1032-9. PubMed ID: 23019817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CdTe Quantum Dot-Functionalized P25 Titania Composite with Enhanced Photocatalytic NO
    Balci Leinen M; Dede D; Khan MU; Çağlayan M; Koçak Y; Demir HV; Ozensoy E
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):865-879. PubMed ID: 30525435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the photocatalytic reaction kinetics in a TiO
    Liu AL; Li ZQ; Wu ZQ; Xia XH
    Talanta; 2018 May; 182():544-548. PubMed ID: 29501190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric-Pressure Cold Plasma Activating Au/P25 for CO Oxidation: Effect of Working Gas.
    Zhang J; Di L; Yu F; Duan D; Zhang X
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30235799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the Photocatalytic Behavior of TiO₂-SnS₂ Composites Based on Their Energy Band Structure.
    Kovacic M; Katic J; Kusic H; Loncaric Bozic A; Metikos Hukovic M
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29921795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.