These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29986469)

  • 1. Dynamic Deflection of a Railroad Sleeper from the Coupled Measurements of Acceleration and Strain.
    Joh SH; Magno K; Hwang SH
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29986469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Railroad Sleeper Condition Monitoring Using Non-Contact in Motion Ultrasonic Ranging and Machine Learning-Based Image Processing.
    Datta D; Hosseinzadeh AZ; Cui R; Lanza di Scalea F
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Sleeper Support Conditions Using Mechanical Model Supported Data-Driven Approach.
    Sysyn M; Przybylowicz M; Nabochenko O; Kou L
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34067271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of an Unsupported Sleeper on the Vertical Bearing Characteristics of Heavy-Haul Railway Ballast.
    Liu D; Su C; Zhang D; Lan C
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Typical Damage Form and Mechanism of a Railway Prestressed Concrete Sleeper.
    You R; Wang J; Ning N; Wang M; Zhang J
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Sleeper-Ballast Particle Contact on Lateral Resistance of Concrete Sleepers in Ballasted Railway Tracks.
    Chalabii J; Movahedi Rad M; Hadizadeh Raisi E; Esfandiari Mehni R
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated processing of railway track deflection signals obtained from velocity and acceleration measurements.
    Milne D; Pen LL; Thompson D; Powrie W
    Proc Inst Mech Eng F J Rail Rapid Transit; 2018 Sep; 232(8):2097-2110. PubMed ID: 30662171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Condition Monitoring of Railway Crossing Geometry via Measured and Simulated Track Responses.
    Milosevic MDG; Pålsson BA; Nissen A; Nielsen JCO; Johansson H
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Bending Test Method for Polymer Railway Sleeper Materials.
    Salih C; Manalo A; Ferdous W; Abousnina R; Yu P; Heyer T; Schubel P
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33919333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental estimating deflection of a simple beam bridge model using grating eddy current sensors.
    Lü C; Liu W; Zhang Y; Zhao H
    Sensors (Basel); 2012; 12(8):9987-10000. PubMed ID: 23112583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Machine-Learning-Based Approach for Railway Track Monitoring Using Acceleration Measured on an In-Service Train.
    Malekjafarian A; Sarrabezolles CA; Khan MA; Golpayegani F
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37688026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-censored rib fracture data during frontal PMHS sled tests.
    Kemper AR; Beeman SM; Porta DJ; Duma SM
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():131-40. PubMed ID: 27586114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-mechanical investigation of railway ballast behavior under cyclic loading in a box test using DEM: effects of elastic layers and ballast types.
    Kumar N; Suhr B; Marschnig S; Dietmaier P; Marte C; Six K
    Granul Matter; 2019; 21(4):106. PubMed ID: 31708679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Plastic Optical Fiber Sensing System for Bridge Deflection Measurement.
    Yang D; Wang JQ; Ren WX; Zhang J
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground reaction force adaptation during cross-slope walking on railroad ballast.
    Wang H; An L; Feng X; Zhao J; Merryweather A; Xu H
    Gait Posture; 2020 Jan; 75():66-71. PubMed ID: 31605898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. THOR dummy chest deflection response in oblique and lateral far-side sled tests.
    Yoganandan N; Hauschild H; Humm J; Purushothaman Y; Pintar FA
    Traffic Inj Prev; 2019; 20(sup1):S32-S37. PubMed ID: 31381439
    [No Abstract]   [Full Text] [Related]  

  • 17. Optimal methods of RTK-GPS/accelerometer integration to monitor the displacement of structures.
    Hwang J; Yun H; Park SK; Lee D; Hong S
    Sensors (Basel); 2012; 12(1):1014-34. PubMed ID: 22368508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridge Displacement Estimation Using a Co-Located Acceleration and Strain.
    Sarwar MZ; Park JW
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Region-specific deflection responses of WorldSID and ES2-re devices in pure lateral and oblique side impacts.
    Yoganandan N; Humm JR; Pintar FA; Brasel K
    Stapp Car Crash J; 2011 Nov; 55():351-78. PubMed ID: 22869314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Depth Camera and Terrestrial Laser Scanner in Monitoring Structural Deflections.
    Maru MB; Lee D; Tola KD; Park S
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.