These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
749 related articles for article (PubMed ID: 29986660)
1. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata). Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660 [TBL] [Abstract][Full Text] [Related]
2. Unravelling the MicroRNA-Mediated Gene Regulation in Developing Pongamia Seeds by High-Throughput Small RNA Profiling. Jin Y; Liu L; Hao X; Harry DE; Zheng Y; Huang T; Huang J Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31319494 [TBL] [Abstract][Full Text] [Related]
3. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. Huang KL; Zhang ML; Ma GJ; Wu H; Wu XM; Ren F; Li XB PLoS One; 2017; 12(6):e0179027. PubMed ID: 28594951 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. Liao B; Hao Y; Lu J; Bai H; Guan L; Zhang T BMC Genomics; 2018 Mar; 19(1):213. PubMed ID: 29562889 [TBL] [Abstract][Full Text] [Related]
6. Molecular mechanism of the extended oil accumulation phase contributing to the high seed oil content for the genotype of tung tree (Vernicia fordii). Zhang L; Wu P; Lu W; Lü S BMC Plant Biol; 2018 Oct; 18(1):248. PubMed ID: 30340540 [TBL] [Abstract][Full Text] [Related]
7. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition. Lin P; Wang K; Zhou C; Xie Y; Yao X; Yin H Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301285 [No Abstract] [Full Text] [Related]
8. De novo assembly of the peanut (Arachis hypogaea L.) seed transcriptome revealed candidate unigenes for oil accumulation pathways. Yin D; Wang Y; Zhang X; Li H; Lu X; Zhang J; Zhang W; Chen S PLoS One; 2013; 8(9):e73767. PubMed ID: 24040062 [TBL] [Abstract][Full Text] [Related]
9. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos. Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds. Abdullah HM; Akbari P; Paulose B; Schnell D; Qi W; Park Y; Pareek A; Dhankher OP Biotechnol Biofuels; 2016; 9():136. PubMed ID: 27382413 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis of metabolic pathways associated with oil accumulation in developing seed kernels of Styrax tonkinensis, a woody biodiesel species. Wu Q; Cao Y; Chen C; Gao Z; Yu F; Guy RD BMC Plant Biol; 2020 Mar; 20(1):121. PubMed ID: 32183691 [TBL] [Abstract][Full Text] [Related]
12. Determination of superior Pistacia chinensis accession with high-quality seed oil and biodiesel production and revelation of LEC1/WRI1-mediated high oil accumulative mechanism for better developing woody biodiesel. Chen F; Lin W; Li W; Hu J; Li Z; Shi L; Zhang Z; Xiu Y; Lin S BMC Plant Biol; 2023 May; 23(1):268. PubMed ID: 37208597 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923 [TBL] [Abstract][Full Text] [Related]
14. Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501 [TBL] [Abstract][Full Text] [Related]
15. Gene expression profiling during seed-filling process in peanut with emphasis on oil biosynthesis networks. Gupta K; Kayam G; Faigenboim-Doron A; Clevenger J; Ozias-Akins P; Hovav R Plant Sci; 2016 Jul; 248():116-27. PubMed ID: 27181953 [TBL] [Abstract][Full Text] [Related]
16. Dynamic Transcriptome Changes Related to Oil Accumulation in Developing Soybean Seeds. Yang S; Miao L; He J; Zhang K; Li Y; Gai J Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31060266 [TBL] [Abstract][Full Text] [Related]
17. Dynamic transcriptome analysis identifies genes related to fatty acid biosynthesis in the seeds of Prunus pedunculata Pall. Bao W; Ao D; Wang L; Ling Z; Chen M; Bai Y; Wuyun TN; Chen J; Zhang S; Li F BMC Plant Biol; 2021 Mar; 21(1):152. PubMed ID: 33761884 [TBL] [Abstract][Full Text] [Related]
18. Integrated Analysis of Seed microRNA and mRNA Transcriptome Reveals Important Functional Genes and microRNA-Targets in the Process of Walnut ( Zhao X; Yang G; Liu X; Yu Z; Peng S Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260456 [TBL] [Abstract][Full Text] [Related]
19. Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea Americana mesocarp. Kilaru A; Cao X; Dabbs PB; Sung HJ; Rahman MM; Thrower N; Zynda G; Podicheti R; Ibarra-Laclette E; Herrera-Estrella L; Mockaitis K; Ohlrogge JB BMC Plant Biol; 2015 Aug; 15():203. PubMed ID: 26276496 [TBL] [Abstract][Full Text] [Related]
20. Whole plant response of Pongamia pinnata to drought stress tolerance revealed by morpho-physiological, biochemical and transcriptome analysis. Rajarajan K; Sakshi S; Taria S; Prathima PT; Radhakrishna A; Anuragi H; Ashajyothi M; Bharati A; Handa AK; Arunachalam A Mol Biol Rep; 2022 Oct; 49(10):9453-9463. PubMed ID: 36057878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]