BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 29986884)

  • 1. Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy.
    Hutt DM; Mishra SK; Roth DM; Larsen MB; Angles F; Frizzell RA; Balch WE
    J Biol Chem; 2018 Aug; 293(35):13682-13695. PubMed ID: 29986884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human heat shock protein 105/110 kDa (Hsp105/110) regulates biogenesis and quality control of misfolded cystic fibrosis transmembrane conductance regulator at multiple levels.
    Saxena A; Banasavadi-Siddegowda YK; Fan Y; Bhattacharya S; Roy G; Giovannucci DR; Frizzell RA; Wang X
    J Biol Chem; 2012 Jun; 287(23):19158-70. PubMed ID: 22505710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition.
    Luciani A; Villella VR; Esposito S; Brunetti-Pierri N; Medina D; Settembre C; Gavina M; Pulze L; Giardino I; Pettoello-Mantovani M; D'Apolito M; Guido S; Masliah E; Spencer B; Quaratino S; Raia V; Ballabio A; Maiuri L
    Nat Cell Biol; 2010 Sep; 12(9):863-75. PubMed ID: 20711182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation.
    De Stefano D; Villella VR; Esposito S; Tosco A; Sepe A; De Gregorio F; Salvadori L; Grassia R; Leone CA; De Rosa G; Maiuri MC; Pettoello-Mantovani M; Guido S; Bossi A; Zolin A; Venerando A; Pinna LA; Mehta A; Bona G; Kroemer G; Maiuri L; Raia V
    Autophagy; 2014; 10(11):2053-74. PubMed ID: 25350163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correcting the F508del-CFTR variant by modulating eukaryotic translation initiation factor 3-mediated translation initiation.
    Hutt DM; Loguercio S; Roth DM; Su AI; Balch WE
    J Biol Chem; 2018 Aug; 293(35):13477-13495. PubMed ID: 30006345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1.
    Ren HY; Grove DE; De La Rosa O; Houck SA; Sopha P; Van Goor F; Hoffman BJ; Cyr DM
    Mol Biol Cell; 2013 Oct; 24(19):3016-24. PubMed ID: 23924900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of the Chaperone-Like HspB5 Rescues Trafficking and Function of F508del-CFTR.
    Degrugillier F; Aissat A; Prulière-Escabasse V; Bizard L; Simonneau B; Decrouy X; Jiang C; Rotin D; Fanen P; Simon S
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32650630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70.
    Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD
    Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration of R117H CFTR folding and function in human airway cells through combination treatment with VX-809 and VX-770.
    Gentzsch M; Ren HY; Houck SA; Quinney NL; Cholon DM; Sopha P; Chaudhry IG; Das J; Dokholyan NV; Randell SH; Cyr DM
    Am J Physiol Lung Cell Mol Physiol; 2016 Sep; 311(3):L550-9. PubMed ID: 27402691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitylation and SUMOylation pathways.
    Ahner A; Gong X; Frizzell RA
    FEBS J; 2013 Sep; 280(18):4430-8. PubMed ID: 23809253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BAG-1 stabilizes mutant F508del-CFTR in a ubiquitin-like-domain-dependent manner.
    Mendes F; Farinha CM; Felício V; Alves PC; Vieira I; Amaral MD
    Cell Physiol Biochem; 2012; 30(5):1120-33. PubMed ID: 23178238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteasome-dependent pharmacological rescue of cystic fibrosis transmembrane conductance regulator revealed by mutation of glycine 622.
    Norez C; Bilan F; Kitzis A; Mettey Y; Becq F
    J Pharmacol Exp Ther; 2008 Apr; 325(1):89-99. PubMed ID: 18230692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators.
    Estabrooks S; Brodsky JL
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing conformational rescue induced by a chemical corrector of F508del-cystic fibrosis transmembrane conductance regulator (CFTR) mutant.
    Yu W; Kim Chiaw P; Bear CE
    J Biol Chem; 2011 Jul; 286(28):24714-25. PubMed ID: 21602569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two Small Molecules Restore Stability to a Subpopulation of the Cystic Fibrosis Transmembrane Conductance Regulator with the Predominant Disease-causing Mutation.
    Meng X; Wang Y; Wang X; Wrennall JA; Rimington TL; Li H; Cai Z; Ford RC; Sheppard DN
    J Biol Chem; 2017 Mar; 292(9):3706-3719. PubMed ID: 28087700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the mechanism of action of RDR01752, a novel corrector of F508del-CFTR.
    Lopes-Pacheco M; Silva IAL; Turner MJ; Carlile GW; Sondo E; Thomas DY; Pedemonte N; Hanrahan JW; Amaral MD
    Biochem Pharmacol; 2020 Oct; 180():114133. PubMed ID: 32628927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint.
    Loureiro CA; Matos AM; Dias-Alves Â; Pereira JF; Uliyakina I; Barros P; Amaral MD; Matos P
    Sci Signal; 2015 May; 8(377):ra48. PubMed ID: 25990958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depletion of the ubiquitin-binding adaptor molecule SQSTM1/p62 from macrophages harboring cftr ΔF508 mutation improves the delivery of Burkholderia cenocepacia to the autophagic machinery.
    Abdulrahman BA; Khweek AA; Akhter A; Caution K; Tazi M; Hassan H; Zhang Y; Rowland PD; Malhotra S; Aeffner F; Davis IC; Valvano MA; Amer AO
    J Biol Chem; 2013 Jan; 288(3):2049-58. PubMed ID: 23148214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological Correction of Cystic Fibrosis: Molecular Mechanisms at the Plasma Membrane to Augment Mutant CFTR Function.
    Arora K; Naren AP
    Curr Drug Targets; 2016; 17(11):1275-81. PubMed ID: 26648081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The anion transporter SLC26A9 localizes to tight junctions and is degraded by the proteasome when co-expressed with F508del-CFTR.
    Sato Y; Thomas DY; Hanrahan JW
    J Biol Chem; 2019 Nov; 294(48):18269-18284. PubMed ID: 31645438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.