These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29987028)

  • 1. Role of elemental carbon in the photochemical aging of soot.
    Li M; Bao F; Zhang Y; Song W; Chen C; Zhao J
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7717-7722. PubMed ID: 29987028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct Photochemistry of Odd-Carbon PAHs from the Even-Carbon Ones During the Photoaging and Analysis of Soot.
    Zhu Y; Li J; Zhang Y; Ji X; Chen J; Huang D; Li J; Li M; Chen C; Zhao J
    Environ Sci Technol; 2024 Jul; 58(26):11578-11586. PubMed ID: 38899536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC.
    Han Y; Cao J; Chow JC; Watson JG; An Z; Jin Z; Fung K; Liu S
    Chemosphere; 2007 Sep; 69(4):569-74. PubMed ID: 17462705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The photoenhanced aging process of soot by the heterogeneous ozonization reaction.
    Han C; Liu Y; He H
    Phys Chem Chem Phys; 2016 Sep; 18(35):24401-7. PubMed ID: 27534511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of intrinsic organic carbon on the optical properties of fresh diesel soot.
    Adler G; Riziq AA; Erlick C; Rudich Y
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6699-704. PubMed ID: 20018649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparison of Monitoring Methods of Organic Carbon and Element Carbon in Atmospheric Fine Particles].
    Pang B; Ji DS; Liu ZR; Zhu B; Wang YS
    Huan Jing Ke Xue; 2016 Apr; 37(4):1230-9. PubMed ID: 27548941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of acidification on the determination of elemental carbon, char-, and soot-elemental carbon in soils and sediments.
    Han YM; Cao JJ; Posmentier ES; Chow JC; Watson JG; Fung KK; Jin ZD; Liu SX; An ZS
    Chemosphere; 2009 Mar; 75(1):92-9. PubMed ID: 19108866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solar absorption by elemental and brown carbon determined from spectral observations.
    Bahadur R; Praveen PS; Xu Y; Ramanathan V
    Proc Natl Acad Sci U S A; 2012 Oct; 109(43):17366-71. PubMed ID: 23045698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes to the chemical composition of soot from heterogeneous oxidation reactions.
    Browne EC; Franklin JP; Canagaratna MR; Massoli P; Kirchstetter TW; Worsnop DR; Wilson KR; Kroll JH
    J Phys Chem A; 2015 Feb; 119(7):1154-63. PubMed ID: 25654760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Organic and element carbon in foliar smoke].
    Chen HY; Liu Gang ; Xu H; Li JH; Wu D
    Huan Jing Ke Xue; 2015 Mar; 36(3):824-30. PubMed ID: 25929047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of long-term primary and secondary source contributions to carbonaceous aerosols.
    Shi G; Peng X; Liu J; Tian Y; Song D; Yu H; Feng Y; Russell AG
    Environ Pollut; 2016 Dec; 219():897-905. PubMed ID: 27616649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Oxygen Species-Related Inside-to-Outside Oxidation of Soot Particles Triggered by Visible-Light Irradiation: Physicochemical Property Changes and Oxidative Potential Enhancement.
    Zhu J; Shang J; Chen Y; Kuang Y; Zhu T
    Environ Sci Technol; 2020 Jul; 54(14):8558-8567. PubMed ID: 32589839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemical Aging of Soot in the Aqueous Phase: Release of Dissolved Black Carbon and the Formation of
    Li M; Bao F; Zhang Y; Sheng H; Chen C; Zhao J
    Environ Sci Technol; 2019 Nov; 53(21):12311-12319. PubMed ID: 31545023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new understanding of the microstructure of soot particles: The reduced graphene oxide-like skeleton and its visible-light driven formation of reactive oxygen species.
    Zhu J; Shang J; Zhu T
    Environ Pollut; 2021 Feb; 270():116079. PubMed ID: 33234379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soot biodegradation by psychrotolerant bacterial consortia.
    Ali B; Sajjad W; Ilahi N; Bahadur A; Kang S
    Biodegradation; 2022 Aug; 33(4):407-418. PubMed ID: 35666328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PM₂.₅., EC and OC in atmospheric outflow from the Indo-Gangetic Plain: temporal variability and aerosol organic carbon-to-organic mass conversion factor.
    Srinivas B; Sarin MM
    Sci Total Environ; 2014 Jul; 487():196-205. PubMed ID: 24784744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in light absorption by brown carbon in soot particles due to heterogeneous ozone aging in a smog chamber.
    Kuang Y; Shang J
    Environ Pollut; 2020 Nov; 266(Pt 1):115273. PubMed ID: 32771846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key role of organic carbon in the sunlight-enhanced atmospheric aging of soot by O2.
    Han C; Liu Y; Ma J; He H
    Proc Natl Acad Sci U S A; 2012 Dec; 109(52):21250-5. PubMed ID: 23236134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brown and black carbon in Beijing aerosol: Implications for the effects of brown coating on light absorption by black carbon.
    Cheng Y; He KB; Engling G; Weber R; Liu JM; Du ZY; Dong SP
    Sci Total Environ; 2017 Dec; 599-600():1047-1055. PubMed ID: 28511349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity and bias of molecular marker-based aerosol source apportionment models to small conltibutions of coal combustion soot.
    Rutter AP; Snyder DC; Schauer JJ; DeMinter J; Shelton B
    Environ Sci Technol; 2009 Oct; 43(20):7770-7. PubMed ID: 19921892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.