These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29987035)

  • 1. GC content elevates mutation and recombination rates in the yeast
    Kiktev DA; Sheng Z; Lobachev KS; Petes TD
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):E7109-E7118. PubMed ID: 29987035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of Mitotic and Meiotic Recombination in the Tandemly-Repeated
    Zhao Y; Dominska M; Petrova A; Bagshaw H; Kokoska RJ; Petes TD
    Genetics; 2017 Jun; 206(2):785-800. PubMed ID: 28381587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GC content and recombination: reassessing the causal effects for the Saccharomyces cerevisiae genome.
    Marsolier-Kergoat MC; Yeramian E
    Genetics; 2009 Sep; 183(1):31-8. PubMed ID: 19546316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple model for the influence of meiotic conversion tracts on GC content.
    Marsolier-Kergoat MC
    PLoS One; 2011 Jan; 6(1):e16109. PubMed ID: 21249197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation.
    Puig S; Querol A; Barrio E; Pérez-Ortín JE
    Appl Environ Microbiol; 2000 May; 66(5):2057-61. PubMed ID: 10788381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae.
    Jinks-Robertson S; Michelitch M; Ramcharan S
    Mol Cell Biol; 1993 Jul; 13(7):3937-50. PubMed ID: 8321201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global analysis of the relationship between the binding of the Bas1p transcription factor and meiosis-specific double-strand DNA breaks in Saccharomyces cerevisiae.
    Mieczkowski PA; Dominska M; Buck MJ; Gerton JL; Lieb JD; Petes TD
    Mol Cell Biol; 2006 Feb; 26(3):1014-27. PubMed ID: 16428454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deeper understanding of the spontaneous derepression of the URA3 gene in MaV203 Saccharomyces cerevisiae and its implications for protein engineering and the reverse two-hybrid system.
    Cortens D; Hansen R; Graulus GJ; Steen Redeker E; Adriaensens P; Guedens W
    Yeast; 2019 Dec; 36(12):701-710. PubMed ID: 31389616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutagenic specificity of the base analog 6-N-hydroxylaminopurine in the URA3 gene of the yeast Saccharomyces cerevisiae.
    Shcherbakova PV; Pavlov YI
    Mutagenesis; 1993 Sep; 8(5):417-21. PubMed ID: 8231822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms of recombination in Saccharomyces cerevisiae: testing mitotic and meiotic models by analysis of hypo-rec and hyper-rec mutations.
    Esposito MS
    Symp Soc Exp Biol; 1984; 38():123-59. PubMed ID: 6400218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the proteins involved in the in vivo repair of base-base mismatches and four-base loops formed during meiotic recombination in the yeast Saccharomyces cerevisiae.
    Stone JE; Petes TD
    Genetics; 2006 Jul; 173(3):1223-39. PubMed ID: 16702432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae.
    Lobachev KS; Shor BM; Tran HT; Taylor W; Keen JD; Resnick MA; Gordenin DA
    Genetics; 1998 Apr; 148(4):1507-24. PubMed ID: 9560370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular evolution of minisatellites in hemiascomycetous yeasts.
    Richard GF; Dujon B
    Mol Biol Evol; 2006 Jan; 23(1):189-202. PubMed ID: 16177231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-step integration method for seamless gene deletion in baker's yeast.
    Dong J; Wang G; Zhang C; Tan H; Sun X; Wu M; Xiao D
    Anal Biochem; 2013 Aug; 439(1):30-6. PubMed ID: 23597844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marker-disruptive gene integration and URA3 recycling for multiple gene manipulation in Saccharomyces cerevisiae.
    Kaneko S; Tanaka T; Noda H; Fukuda H; Akada R; Kondo A
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):783-9. PubMed ID: 19455322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of mismatch repair and Hpr1 on transcription-stimulated mitotic recombination in the yeast Saccharomyces cerevisiae.
    Freedman JA; Jinks-Robertson S
    DNA Repair (Amst); 2004 Nov; 3(11):1437-46. PubMed ID: 15380099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of chromosomal locus, GC content and length of homology on PCR-mediated targeted gene replacement in Saccharomyces.
    Gray M; Honigberg SM
    Nucleic Acids Res; 2001 Dec; 29(24):5156-62. PubMed ID: 11812849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repetitive δ-integration of a cellulase-encoding gene into the chromosome of an industrial Angel Yeast-derived strain by URA3 recycling.
    Zou S; Sun S; Zhang X; Li J; Guo J; Hong J; Ma Y; Zhang M
    Biotechnol Appl Biochem; 2021 Oct; 68(5):953-963. PubMed ID: 32658331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Context dependence of meiotic recombination hotspots in yeast: the relationship between recombination activity of a reporter construct and base composition.
    Petes TD; Merker JD
    Genetics; 2002 Dec; 162(4):2049-52. PubMed ID: 12524370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae.
    Lang GI; Murray AW
    Genetics; 2008 Jan; 178(1):67-82. PubMed ID: 18202359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.