These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29987043)

  • 1. A random first-order transition theory for an active glass.
    Nandi SK; Mandal R; Bhuyan PJ; Dasgupta C; Rao M; Gov NS
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7688-7693. PubMed ID: 29987043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glassy dynamics of athermal self-propelled particles: Computer simulations and a nonequilibrium microscopic theory.
    Szamel G; Flenner E; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062304. PubMed ID: 26172716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the dynamics of glass-forming liquids with random pinning within the random first order transition theory.
    Chakrabarty S; Das R; Karmakar S; Dasgupta C
    J Chem Phys; 2016 Jul; 145(3):034507. PubMed ID: 27448896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonequilibrium mode-coupling theory for dense active systems of self-propelled particles.
    Nandi SK; Gov NS
    Soft Matter; 2017 Oct; 13(41):7609-7616. PubMed ID: 29028064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple Types of Aging in Active Glasses.
    Mandal R; Sollich P
    Phys Rev Lett; 2020 Nov; 125(21):218001. PubMed ID: 33274976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nonequilibrium glassy dynamics of self-propelled particles.
    Flenner E; Szamel G; Berthier L
    Soft Matter; 2016 Sep; 12(34):7136-49. PubMed ID: 27499055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing large viscosities in glass-formers with nonequilibrium simulations.
    Jadhao V; Robbins MO
    Proc Natl Acad Sci U S A; 2017 Jul; 114(30):7952-7957. PubMed ID: 28696320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous-time random-walk approach to supercooled liquids: Self-part of the van Hove function and related quantities.
    Helfferich J; Brisch J; Meyer H; Benzerara O; Ziebert F; Farago J; Baschnagel J
    Eur Phys J E Soft Matter; 2018 Jun; 41(6):71. PubMed ID: 29876655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium phase diagram of a randomly pinned glass-former.
    Ozawa M; Kob W; Ikeda A; Miyazaki K
    Proc Natl Acad Sci U S A; 2015 Jun; 112(22):6914-9. PubMed ID: 25976100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragile-to-strong crossover, growing length scales, and dynamic heterogeneity in Wigner glasses.
    Cho HW; Mugnai ML; Kirkpatrick TR; Thirumalai D
    Phys Rev E; 2020 Mar; 101(3-1):032605. PubMed ID: 32290023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear-induced orientational ordering in an active glass former.
    Mandal R; Sollich P
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34551973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation.
    Starr FW; Douglas JF; Sastry S
    J Chem Phys; 2013 Mar; 138(12):12A541. PubMed ID: 23556792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of activated transport in glassy liquids.
    Lubchenko V; Rabochiy P
    J Phys Chem B; 2014 Nov; 118(47):13744-59. PubMed ID: 25347199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium glassy dynamics of self-propelled hard disks.
    Berthier L
    Phys Rev Lett; 2014 Jun; 112(22):220602. PubMed ID: 24949749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic theory of the glassy dynamics of passive and active network materials.
    Wang S; Wolynes PG
    J Chem Phys; 2013 Mar; 138(12):12A521. PubMed ID: 23556772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient exact method to obtain GBLUP and single-step GBLUP when the genomic relationship matrix is singular.
    Fernando RL; Cheng H; Garrick DJ
    Genet Sel Evol; 2016 Oct; 48(1):80. PubMed ID: 27788669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical heterogeneity in active glasses is inherently different from its equilibrium behavior.
    Paul K; Mutneja A; Nandi SK; Karmakar S
    Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2217073120. PubMed ID: 37585467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.
    Feng M; Hou Z
    Soft Matter; 2017 Jun; 13(25):4464-4481. PubMed ID: 28580481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Configurational entropy of binary hard-disk glasses: nonexistence of an ideal glass transition.
    Donev A; Stillinger FH; Torquato S
    J Chem Phys; 2007 Sep; 127(12):124509. PubMed ID: 17902923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glass Dynamics Deep in the Energy Landscape.
    Ediger MD; Gruebele M; Lubchenko V; Wolynes PG
    J Phys Chem B; 2021 Aug; 125(32):9052-9068. PubMed ID: 34357766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.