These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29987043)

  • 21. Active fluidization in dense glassy systems.
    Mandal R; Bhuyan PJ; Rao M; Dasgupta C
    Soft Matter; 2016 Jul; 12(29):6268-76. PubMed ID: 27380935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exact theory of dense amorphous hard spheres in high dimension. II. The high density regime and the Gardner transition.
    Kurchan J; Parisi G; Urbani P; Zamponi F
    J Phys Chem B; 2013 Oct; 117(42):12979-94. PubMed ID: 23581562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theory of aging in structural glasses.
    Lubchenko V; Wolynes PG
    J Chem Phys; 2004 Aug; 121(7):2852-65. PubMed ID: 15291595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the surface of glasses.
    Stevenson JD; Wolynes PG
    J Chem Phys; 2008 Dec; 129(23):234514. PubMed ID: 19102545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport coefficients in dense active Brownian particle systems: mode-coupling theory and simulation results.
    Reichert J; Granz LF; Voigtmann T
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):27. PubMed ID: 33704593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced hyperuniformity from random reorganization.
    Hexner D; Chaikin PM; Levine D
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4294-4299. PubMed ID: 28396393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aging or DEAD: Origin of the non-monotonic response to weak self-propulsion in active glasses.
    Klongvessa N; Ybert C; Cottin-Bizonne C; Kawasaki T; Leocmach M
    J Chem Phys; 2022 Apr; 156(15):154509. PubMed ID: 35459302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How to study a persistent active glassy system.
    Mandal R; Sollich P
    J Phys Condens Matter; 2021 Apr; 33(18):. PubMed ID: 33730708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glassy swirls of active dumbbells.
    Mandal R; Bhuyan PJ; Chaudhuri P; Rao M; Dasgupta C
    Phys Rev E; 2017 Oct; 96(4-1):042605. PubMed ID: 29347636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Active glassy dynamics is unaffected by the microscopic details of self-propulsion.
    Debets VE; Janssen LMC
    J Chem Phys; 2022 Dec; 157(22):224902. PubMed ID: 36546821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport coefficients of soft repulsive particle fluids.
    Heyes DM; Brańka AC
    J Phys Condens Matter; 2008 Mar; 20(11):115102. PubMed ID: 21694216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2011 May; 23(19):194121. PubMed ID: 21525551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theory and simulation for equilibrium glassy dynamics in cellular Potts model of confluent biological tissue.
    Sadhukhan S; Nandi SK
    Phys Rev E; 2021 Jun; 103(6-1):062403. PubMed ID: 34271700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Manifestation of random first-order transition theory in Wigner glasses.
    Kang H; Kirkpatrick TR; Thirumalai D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042308. PubMed ID: 24229173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Does the configurational entropy of polydisperse particles exist?
    Ozawa M; Berthier L
    J Chem Phys; 2017 Jan; 146(1):014502. PubMed ID: 28063453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bone refilling in cortical basic multicellular units: insights into tetracycline double labelling from a computational model.
    Buenzli PR; Pivonka P; Smith DW
    Biomech Model Mechanobiol; 2014 Jan; 13(1):185-203. PubMed ID: 23632774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reentrance in an active glass mixture.
    Pilkiewicz KR; Eaves JD
    Soft Matter; 2014 Oct; 10(38):7495-501. PubMed ID: 25208297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microscopic theory of the jamming transition of harmonic spheres.
    Berthier L; Jacquin H; Zamponi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051103. PubMed ID: 22181365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing the non-Debye low-frequency excitations in glasses through random pinning.
    Angelani L; Paoluzzi M; Parisi G; Ruocco G
    Proc Natl Acad Sci U S A; 2018 Aug; 115(35):8700-8704. PubMed ID: 30104381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bridging the gap between the mode coupling and the random first order transition theories of structural relaxation in liquids.
    Bhattacharyya SM; Bagchi B; Wolynes PG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031509. PubMed ID: 16241446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.