BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

801 related articles for article (PubMed ID: 29987163)

  • 1. A Tolerogenic Artificial APC Durably Ameliorates Experimental Autoimmune Encephalomyelitis by Directly and Selectively Modulating Myelin Peptide-Autoreactive CD4
    Wan X; Pei W; Shahzad KA; Zhang L; Song S; Jin X; Wang L; Zhao C; Shen C
    J Immunol; 2018 Aug; 201(4):1194-1210. PubMed ID: 29987163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct modulation of myelin-autoreactive CD4
    Pei W; Wan X; Shahzad KA; Zhang L; Song S; Jin X; Wang L; Zhao C; Shen C
    Int J Nanomedicine; 2018; 13():3731-3750. PubMed ID: 29983566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T cell-depleted splenocytes from mice pre-immunized with neuroantigen in incomplete Freund's adjuvant involved in protection from experimental autoimmune encephalomyelitis.
    Zheng H; Zhang H; Liu F; Qi Y; Jiang H
    Immunol Lett; 2014; 157(1-2):38-44. PubMed ID: 24220208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inconsistence between number and function of autoreactive T cells in the course of experimental autoimmune encephalomyelitis.
    Wan X; Pei W; Zhang Y; Zhang L; Shahzad KA; Xu T; Shen C
    Immunol Invest; 2018 Jan; 47(1):1-17. PubMed ID: 28872930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of myelin oligodendrocyte glycoprotein (MOG)35-55-specific CD8+ T cells in experimental autoimmune encephalomyelitis.
    Peng Y; Zhu FZ; Chen ZX; Zhou JX; Gan L; Yang SS; Gao S; Liu QQ
    Chin Med J (Engl); 2019 Dec; 132(24):2934-2940. PubMed ID: 31855963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis.
    Kohm AP; Carpentier PA; Anger HA; Miller SD
    J Immunol; 2002 Nov; 169(9):4712-6. PubMed ID: 12391178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronological changes of CD4(+) and CD8(+) T cell subsets in the experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis.
    Sonobe Y; Jin S; Wang J; Kawanokuchi J; Takeuchi H; Mizuno T; Suzumura A
    Tohoku J Exp Med; 2007 Dec; 213(4):329-39. PubMed ID: 18075237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cutting edge: in vitro-generated tolerogenic APC induce CD8+ T regulatory cells that can suppress ongoing experimental autoimmune encephalomyelitis.
    Faunce DE; Terajewicz A; Stein-Streilein J
    J Immunol; 2004 Feb; 172(4):1991-5. PubMed ID: 14764660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antigen-oriented T cell migration contributes to myelin peptide induced-EAE and immune tolerance.
    Zheng P; Fu H; Wei G; Wei Z; Zhang J; Ma X; Rui D; Meng X; Ming L
    Clin Immunol; 2016 Aug; 169():36-46. PubMed ID: 27327113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune regulatory CNS-reactive CD8+T cells in experimental autoimmune encephalomyelitis.
    York NR; Mendoza JP; Ortega SB; Benagh A; Tyler AF; Firan M; Karandikar NJ
    J Autoimmun; 2010 Aug; 35(1):33-44. PubMed ID: 20172692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective depletion of CD11c
    Wang L; Li Z; Ciric B; Safavi F; Zhang GX; Rostami A
    Eur J Immunol; 2016 Oct; 46(10):2454-2466. PubMed ID: 27338697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroprotective effects of G-CSF administration in microglia-mediated reactive T cell activation in vitro.
    Peng W
    Immunol Res; 2017 Aug; 65(4):888-902. PubMed ID: 28646409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depletion of CD4+ CD25+ regulatory T cells confers susceptibility to experimental autoimmune encephalomyelitis (EAE) in GM-CSF-deficient Csf2-/- mice.
    Ghosh D; Curtis AD; Wilkinson DS; Mannie MD
    J Leukoc Biol; 2016 Oct; 100(4):747-760. PubMed ID: 27256565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mannan-conjugated myelin peptides prime non-pathogenic Th1 and Th17 cells and ameliorate experimental autoimmune encephalomyelitis.
    Tseveleki V; Tselios T; Kanistras I; Koutsoni O; Karamita M; Vamvakas SS; Apostolopoulos V; Dotsika E; Matsoukas J; Lassmann H; Probert L
    Exp Neurol; 2015 May; 267():254-67. PubMed ID: 25447934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pituitary adenylate cyclase-activating polypeptide (PACAP) ameliorates experimental autoimmune encephalomyelitis by suppressing the functions of antigen presenting cells.
    Kato H; Ito A; Kawanokuchi J; Jin S; Mizuno T; Ojika K; Ueda R; Suzumura A
    Mult Scler; 2004 Dec; 10(6):651-9. PubMed ID: 15584490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intravenous Injection of Myelin Oligodendrocyte Glycoprotein-coated PLGA Microparticles Have Tolerogenic Effects in Experimental Autoimmune Encephalomyelitis.
    Gholamzad M; Ebtekar M; Shafiee Ardestani M
    Iran J Allergy Asthma Immunol; 2017 Jun; 16(3):271-281. PubMed ID: 28732440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A GMCSF-Neuroantigen Tolerogenic Vaccine Elicits Systemic Lymphocytosis of CD4
    Moorman CD; Curtis AD; Bastian AG; Elliott SE; Mannie MD
    Front Immunol; 2018; 9():3119. PubMed ID: 30687323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevention of experimental autoimmune encephalomyelitis by transfer of embryonic stem cell-derived dendritic cells expressing myelin oligodendrocyte glycoprotein peptide along with TRAIL or programmed death-1 ligand.
    Hirata S; Senju S; Matsuyoshi H; Fukuma D; Uemura Y; Nishimura Y
    J Immunol; 2005 Feb; 174(4):1888-97. PubMed ID: 15699115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MOG extracellular domain (p1-125) triggers elevated frequency of CXCR3+ CD4+ Th1 cells in the CNS of mice and induces greater incidence of severe EAE.
    Mony JT; Khorooshi R; Owens T
    Mult Scler; 2014 Sep; 20(10):1312-21. PubMed ID: 24552747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-recognition of a myelin peptide by CD8+ T cells in the CNS is not sufficient to promote neuronal damage.
    Reuter E; Gollan R; Grohmann N; Paterka M; Salmon H; Birkenstock J; Richers S; Leuenberger T; Brandt AU; Kuhlmann T; Zipp F; Siffrin V
    J Neurosci; 2015 Mar; 35(12):4837-50. PubMed ID: 25810515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.