These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29987232)

  • 1. NTyroSite: Computational Identification of Protein Nitrotyrosine Sites Using Sequence Evolutionary Features.
    Hasan MM; Khatun MS; Mollah MNH; Yong C; Dianjing G
    Molecules; 2018 Jul; 23(7):. PubMed ID: 29987232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PredNTS: Improved and Robust Prediction of Nitrotyrosine Sites by Integrating Multiple Sequence Features.
    Nilamyani AN; Auliah FN; Moni MA; Shoombuatong W; Hasan MM; Kurata H
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic identification of species-specific protein succinylation sites using joint element features information.
    Hasan MM; Khatun MS; Mollah MNH; Yong C; Guo D
    Int J Nanomedicine; 2017; 12():6303-6315. PubMed ID: 28894368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurately predicting nitrosylated tyrosine sites using probabilistic sequence information.
    Rahman A; Ahmed S; Al Mehedi Hasan M; Ahmad S; Dehzangi I
    Gene; 2022 Jun; 826():146445. PubMed ID: 35358650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties.
    Hasan MM; Yang S; Zhou Y; Mollah MN
    Mol Biosyst; 2016 Mar; 12(3):786-95. PubMed ID: 26739209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information.
    Hasan MM; Guo D; Kurata H
    Mol Biosyst; 2017 Nov; 13(12):2545-2550. PubMed ID: 28990628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatics analysis reveals biophysical and evolutionary insights into the 3-nitrotyrosine post-translational modification in the human proteome.
    Ng JY; Boelen L; Wong JW
    Open Biol; 2013 Feb; 3(2):120148. PubMed ID: 23389939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GPSuc: Global Prediction of Generic and Species-specific Succinylation Sites by aggregating multiple sequence features.
    Hasan MM; Kurata H
    PLoS One; 2018; 13(10):e0200283. PubMed ID: 30312302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pNitro-Tyr-PseAAC: Predict Nitrotyrosine Sites in Proteins by Incorporating Five Features into Chou's General PseAAC.
    Ghauri AW; Khan YD; Rasool N; Khan SA; Chou KC
    Curr Pharm Des; 2018; 24(34):4034-4043. PubMed ID: 30479209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information.
    Hasan MM; Rashid MM; Khatun MS; Kurata H
    Sci Rep; 2019 Jun; 9(1):8258. PubMed ID: 31164681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of serine phosphorylation sites mapping on Schizosaccharomyces Pombe by fusing three encoding schemes with the random forest classifier.
    Tasmia SA; Kibria MK; Tuly KF; Islam MA; Khatun MS; Hasan MM; Mollah MNH
    Sci Rep; 2022 Feb; 12(1):2632. PubMed ID: 35173235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting phosphorylation site prediction with sequence feature-based machine learning.
    Maiti S; Hassan A; Mitra P
    Proteins; 2020 Feb; 88(2):284-291. PubMed ID: 31412138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PrAS: Prediction of amidation sites using multiple feature extraction.
    Wang T; Zheng W; Wuyun Q; Wu Z; Ruan J; Hu G; Gao J
    Comput Biol Chem; 2017 Feb; 66():57-62. PubMed ID: 27918921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Prediction and Analysis for Tyrosine Post-Translational Modifications via Elastic Net.
    Cao M; Chen G; Wang L; Wen P; Shi S
    J Chem Inf Model; 2018 Jun; 58(6):1272-1281. PubMed ID: 29775287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue.
    Hasan MA; Li J; Ahmad S; Molla MK
    Anal Biochem; 2017 May; 525():107-113. PubMed ID: 28286168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometric identification of in vivo nitrotyrosine sites in the human pituitary tumor proteome.
    Zhan X; Desiderio DM
    Methods Mol Biol; 2009; 566():137-63. PubMed ID: 20058170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GPS-YNO2: computational prediction of tyrosine nitration sites in proteins.
    Liu Z; Cao J; Ma Q; Gao X; Ren J; Xue Y
    Mol Biosyst; 2011 Apr; 7(4):1197-204. PubMed ID: 21258675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.