These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 29987273)

  • 1. Enhancing hot electron collection with nanotube-based three-dimensional catalytic nanodiode under hydrogen oxidation.
    Goddeti KC; Lee H; Jeon B; Park JY
    Chem Commun (Camb); 2018 Aug; 54(65):8968-8971. PubMed ID: 29987273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hot Electron Transport on Three-Dimensional Pt/Mesoporous TiO
    Jeon B; Lee H; Goddeti KC; Park JY
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):15152-15159. PubMed ID: 30939872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced flux of chemically induced hot electrons on a Pt nanowire/Si nanodiode during decomposition of hydrogen peroxide.
    Kim H; Kim YJ; Jung YS; Park JY
    Nanoscale Adv; 2020 Oct; 2(10):4410-4416. PubMed ID: 36132908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.
    Somorjai GA; Bratlie KM; Montano MO; Park JY
    J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced hot electron generation by inverse metal-oxide interfaces on catalytic nanodiode.
    Lee H; Yoon S; Jo J; Jeon B; Hyeon T; An K; Park JY
    Faraday Discuss; 2019 May; 214(0):353-364. PubMed ID: 30810549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-Semiconductor Catalytic Nanodiodes for Quantitative Detection of Hot Electrons Induced by a Chemical Reaction.
    Lee H; Nedrygailov II; Lee YK; Lee C; Choi H; Choi JS; Choi CG; Park JY
    Nano Lett; 2016 Mar; 16(3):1650-6. PubMed ID: 26910271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catalytic nanodiode: detecting continuous electron flow at oxide-metal interfaces generated by a gas-phase exothermic reaction.
    Park JY; Somorjai GA
    Chemphyschem; 2006 Jul; 7(7):1409-13. PubMed ID: 16739158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional hot electron photovoltaic device with vertically aligned TiO
    Goddeti KC; Lee C; Lee YK; Park JY
    Sci Rep; 2018 May; 8(1):7330. PubMed ID: 29743488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting hot electron flux and catalytic activity at metal-oxide interfaces of PtCo bimetallic nanoparticles.
    Lee H; Lim J; Lee C; Back S; An K; Shin JW; Ryoo R; Jung Y; Park JY
    Nat Commun; 2018 Jun; 9(1):2235. PubMed ID: 29884825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elongated Lifetime and Enhanced Flux of Hot Electrons on a Perovskite Plasmonic Nanodiode.
    Park Y; Choi J; Lee C; Cho AN; Cho DW; Park NG; Ihee H; Park JY
    Nano Lett; 2019 Aug; 19(8):5489-5495. PubMed ID: 31348860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the Loss Mechanism of Chemically-Induced Hot Electron Transport.
    Roh Y; Jin Y; Jeon B; Park Y; Yu K; Park JY
    Nano Lett; 2024 Mar; 24(11):3490-3497. PubMed ID: 38466136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces.
    Lee SW; Kim JM; Park W; Lee H; Lee GR; Jung Y; Jung YS; Park JY
    Nat Commun; 2021 Jan; 12(1):40. PubMed ID: 33397946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Hot Electron Generation at the Solid-Liquid Interface Is Different from the Solid-Gas Interface.
    Lee SW; Kim H; Park JY
    Nano Lett; 2023 Jun; 23(11):5373-5380. PubMed ID: 36930862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen oxidation-driven hot electron flow detected by catalytic nanodiodes.
    Hervier A; Renzas JR; Park JY; Somorjai GA
    Nano Lett; 2009 Nov; 9(11):3930-3. PubMed ID: 19731919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic Control of Hot Electron Transport Using Modified Schottky Barriers in Metal-Semiconductor Nanodiodes.
    Jeon B; Lee C; Park JY
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9252-9259. PubMed ID: 33587596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot electron-driven electrocatalytic hydrogen evolution reaction on metal-semiconductor nanodiode electrodes.
    Nedrygailov II; Moon SY; Park JY
    Sci Rep; 2019 Apr; 9(1):6208. PubMed ID: 30996284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron flow generated by gas phase exothermic catalytic reactions using a platinum-gallium nitride nanodiode.
    Ji X; Zuppero A; Gidwani JM; Somorjai GA
    J Am Chem Soc; 2005 Apr; 127(16):5792-3. PubMed ID: 15839669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical-reaction-induced hot electron flows on platinum colloid nanoparticles under hydrogen oxidation: impact of nanoparticle size.
    Lee H; Nedrygailov II; Lee C; Somorjai GA; Park JY
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2340-4. PubMed ID: 25645508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous hot electron generation in Pt/TiO2, Pd/TiO2, and Pt/GaN catalytic nanodiodes from oxidation of carbon monoxide.
    Ji XZ; Somorjai GA
    J Phys Chem B; 2005 Dec; 109(47):22530-5. PubMed ID: 16853934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.