These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 29987303)

  • 21. Electronic control of H+ current in a bioprotonic device with carbon nanotube porins.
    Hemmatian Z; Tunuguntla RH; Noy A; Rolandi M
    PLoS One; 2019; 14(2):e0212197. PubMed ID: 30794578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metallicity-Dependent Ultrafast Water Transport in Carbon Nanotubes.
    Velioğlu S; Karahan HE; Goh K; Bae TH; Chen Y; Chew JW
    Small; 2020 Jun; 16(25):e1907575. PubMed ID: 32432833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comment on "Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins".
    Horner A; Pohl P
    Science; 2018 Mar; 359(6383):. PubMed ID: 29599215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulations of electrophoretic RNA transport through transmembrane carbon nanotubes.
    Zimmerli U; Koumoutsakos P
    Biophys J; 2008 Apr; 94(7):2546-57. PubMed ID: 18178663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Osmotically-driven transport in carbon nanotube porins.
    Kim K; Geng J; Tunuguntla R; Comolli LR; Grigoropoulos CP; Ajo-Franklin CM; Noy A
    Nano Lett; 2014 Dec; 14(12):7051-6. PubMed ID: 25372973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast mass transport through sub-2-nanometer carbon nanotubes.
    Holt JK; Park HG; Wang Y; Stadermann M; Artyukhin AB; Grigoropoulos CP; Noy A; Bakajin O
    Science; 2006 May; 312(5776):1034-7. PubMed ID: 16709781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electric Field Induced Biomimetic Transmembrane Electron Transport Using Carbon Nanotube Porins.
    Hicks JM; Yao YC; Barber S; Neate N; Watts JA; Noy A; Rawson FJ
    Small; 2021 Aug; 17(32):e2102517. PubMed ID: 34269516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient.
    Zheng J; Lennon EM; Tsao HK; Sheng YJ; Jiang S
    J Chem Phys; 2005 Jun; 122(21):214702. PubMed ID: 15974757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations.
    Peter C; Hummer G
    Biophys J; 2005 Oct; 89(4):2222-34. PubMed ID: 16006629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast mass transport through carbon nanotube membranes.
    Verweij H; Schillo MC; Li J
    Small; 2007 Dec; 3(12):1996-2004. PubMed ID: 18022891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pH-tunable ion selectivity in carbon nanotube pores.
    Fornasiero F; In JB; Kim S; Park HG; Wang Y; Grigoropoulos CP; Noy A; Bakajin O
    Langmuir; 2010 Sep; 26(18):14848-53. PubMed ID: 20715879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A carbon nanotube wall membrane for water treatment.
    Lee B; Baek Y; Lee M; Jeong DH; Lee HH; Yoon J; Kim YH
    Nat Commun; 2015 May; 6():7109. PubMed ID: 25971895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of nanochannel dimension on the transport of water molecules.
    Su J; Guo H
    J Phys Chem B; 2012 May; 116(20):5925-32. PubMed ID: 22448756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Putting together the puzzle of ion transfer in single-digit carbon nanotubes: mean-field meets
    Neklyudov V; Freger V
    Nanoscale; 2022 Jun; 14(24):8677-8690. PubMed ID: 35671158
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gated ion transport through dense carbon nanotube membranes.
    Yu M; Funke HH; Falconer JL; Noble RD
    J Am Chem Soc; 2010 Jun; 132(24):8285-90. PubMed ID: 20504021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable phenol remediation from wastewater using SWCNT-based, sub-nanometer porous membranes: reactive molecular dynamics simulations and DFT calculations.
    Moradi F; Ganji MD; Sarrafi Y
    Phys Chem Chem Phys; 2017 Mar; 19(12):8388-8399. PubMed ID: 28282089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Negative effect of nanoconfinement on water transport across nanotube membranes.
    Zhao K; Wu H; Han B
    J Chem Phys; 2017 Oct; 147(16):164705. PubMed ID: 29096476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A molecular dynamics investigation of the influence of water structure on ion conduction through a carbon nanotube.
    Liu L; Patey GN
    J Chem Phys; 2017 Feb; 146(7):074502. PubMed ID: 28228035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2013 Mar; 138(12):124701. PubMed ID: 23556736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.