These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29987305)

  • 1. Molecular dynamics simulation of the electrical conductive network formation of polymer nanocomposites with polymer-grafted nanorods.
    Li F; Duan X; Zhang H; Li B; Liu J; Gao Y; Zhang L
    Phys Chem Chem Phys; 2018 Aug; 20(34):21822-21831. PubMed ID: 29987305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Percolation analysis of the electrical conductive network in a polymer nanocomposite by nanorod functionalization.
    Ma R; Mu G; Zhang H; Liu J; Gao Y; Zhao X; Zhang L
    RSC Adv; 2019 Nov; 9(62):36324-36333. PubMed ID: 35540620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effect in improving the electrical conductivity in polymer nanocomposites by mixing spherical and rod-shaped fillers.
    Qu F; Sun W; Li B; Li F; Gao Y; Zhao X; Zhang L
    Soft Matter; 2020 Dec; 16(46):10454-10462. PubMed ID: 33057553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the electrical conductive network formation in nanorod filled polymer nanocomposites by tuning nanorod stiffness.
    Gao Y; Ma R; Zhang H; Liu J; Zhao X; Zhang L
    RSC Adv; 2018 Aug; 8(53):30248-30256. PubMed ID: 35546821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the electrical conductive network formation of polymer nanocomposites via polymer functionalization.
    Gao Y; Wu Y; Liu J; Zhang L
    Soft Matter; 2016 Dec; 12(48):9738-9748. PubMed ID: 27869283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of the electrical conductive network formation of polymer nanocomposites by utilizing diblock copolymer-mediated nanoparticles.
    Gao Y; Duan X; Jiang P; Zhang H; Liu J; Wen S; Zhao X; Zhang L
    Soft Matter; 2019 Aug; 15(31):6331-6339. PubMed ID: 31271186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Destruction and recovery of a nanorod conductive network in polymer nanocomposites via molecular dynamics simulation.
    Gao Y; Cao D; Wu Y; Liu J; Zhang L
    Soft Matter; 2016 Mar; 12(12):3074-83. PubMed ID: 26895557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation of the conductivity mechanism of nanorod filled polymer nanocomposites.
    Gao Y; Cao D; Liu J; Shen J; Wu Y; Zhang L
    Phys Chem Chem Phys; 2015 Sep; 17(35):22959-68. PubMed ID: 26267833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation study of the fracture properties of polymer nanocomposites filled with grafted nanoparticles.
    Hu F; Nie Y; Li F; Liu J; Gao Y; Wang W; Zhang L
    Phys Chem Chem Phys; 2019 May; 21(21):11320-11328. PubMed ID: 31106789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between dispersion and conductivity of polymer nanocomposites: a molecular dynamics study.
    Feng Y; Zou H; Tian M; Zhang L; Mi J
    J Phys Chem B; 2012 Nov; 116(43):13081-8. PubMed ID: 23057420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the dispersion and orientation of nanorods in polymer melt under shear: coarse-grained molecular dynamics simulation study.
    Park JH; Kalra V; Joo YL
    J Chem Phys; 2014 Mar; 140(12):124903. PubMed ID: 24697477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation.
    Liu J; Gao Y; Cao D; Zhang L; Guo Z
    Langmuir; 2011 Jun; 27(12):7926-33. PubMed ID: 21595451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of the structural, mechanical and visco-elastic properties of polymer nanocomposites filled with grafted nanoparticles.
    Shen J; Liu J; Li H; Gao Y; Li X; Wu Y; Zhang L
    Phys Chem Chem Phys; 2015 Mar; 17(11):7196-207. PubMed ID: 25690511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting the dispersion mechanism of grafted nanoparticles in polymer matrix: a detailed molecular dynamics simulation.
    Shen J; Liu J; Gao Y; Cao D; Zhang L
    Langmuir; 2011 Dec; 27(24):15213-22. PubMed ID: 22040300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.
    Nair N; Wentzel N; Jayaraman A
    J Chem Phys; 2011 May; 134(19):194906. PubMed ID: 21599087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing the Thermal Conductivity of Graphene-Polyamide-6,6 Nanocomposites by Surface-Grafted Polymer Chains: Calculation with Molecular Dynamics and Effective-Medium Approximation.
    Gao Y; Müller-Plathe F
    J Phys Chem B; 2016 Feb; 120(7):1336-46. PubMed ID: 26800434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation of the formation mechanism of the thermal conductive filler network of polymer nanocomposites.
    Han Y; Li K; Li Z; Liu J; Hu S; Wen S; Liu L; Zhang L
    Phys Chem Chem Phys; 2022 Feb; 24(7):4334-4347. PubMed ID: 35107443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly and structural manipulation of diblock-copolymer grafted nanoparticles in a homopolymer matrix.
    Li S; Zhang Z; Hou G; Liu J; Gao Y; Coates P; Zhang L
    Phys Chem Chem Phys; 2019 Jun; 21(22):11785-11796. PubMed ID: 31115402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersion and Diffusion Mechanism of Nanofillers with Different Geometries in Bottlebrush Polymers: Insights from Molecular Dynamics Simulation.
    Qu J; Chen Q; Huang W; Zhang L; Liu J
    J Phys Chem B; 2022 Oct; 126(39):7761-7770. PubMed ID: 36169228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersion and shear-induced orientation of anisotropic nanoparticle filled polymer nanocomposites: insights from molecular dynamics simulation.
    Zheng Z; Wang Z; Wang L; Liu J; Wu Y; Zhang L
    Nanotechnology; 2016 Jul; 27(26):265704. PubMed ID: 27196704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.