These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 29987362)
1. A126 in the active site and TI167/168 in the TI loop are essential determinants of the substrate specificity of PTEN. Leitner MG; Hobiger K; Mavrantoni A; Feuer A; Oberwinkler J; Oliver D; Halaszovich CR Cell Mol Life Sci; 2018 Nov; 75(22):4235-4250. PubMed ID: 29987362 [TBL] [Abstract][Full Text] [Related]
2. Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence. Keum D; Kruse M; Kim DI; Hille B; Suh BC Proc Natl Acad Sci U S A; 2016 Jun; 113(26):E3686-95. PubMed ID: 27222577 [TBL] [Abstract][Full Text] [Related]
3. A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate. Iwasaki H; Murata Y; Kim Y; Hossain MI; Worby CA; Dixon JE; McCormack T; Sasaki T; Okamura Y Proc Natl Acad Sci U S A; 2008 Jun; 105(23):7970-5. PubMed ID: 18524949 [TBL] [Abstract][Full Text] [Related]
4. A method to control phosphoinositides and to analyze PTEN function in living cells using voltage sensitive phosphatases. Mavrantoni A; Thallmair V; Leitner MG; Schreiber DN; Oliver D; Halaszovich CR Front Pharmacol; 2015; 6():68. PubMed ID: 25873899 [TBL] [Abstract][Full Text] [Related]
5. Role of K364 next to the active site cysteine in voltage-dependent phosphatase activity of Ci-VSP. Paixao IC; Mizutani N; Matsuda M; Andriani RT; Kawai T; Nakagawa A; Okochi Y; Okamura Y Biophys J; 2023 Jun; 122(11):2267-2284. PubMed ID: 36680342 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of the cytoplasmic phosphatase and tensin homolog (PTEN)-like region of Ciona intestinalis voltage-sensing phosphatase provides insight into substrate specificity and redox regulation of the phosphoinositide phosphatase activity. Matsuda M; Takeshita K; Kurokawa T; Sakata S; Suzuki M; Yamashita E; Okamura Y; Nakagawa A J Biol Chem; 2011 Jul; 286(26):23368-77. PubMed ID: 21543329 [TBL] [Abstract][Full Text] [Related]
8. Controlling the activity of a phosphatase and tensin homolog (PTEN) by membrane potential. Lacroix J; Halaszovich CR; Schreiber DN; Leitner MG; Bezanilla F; Oliver D; Villalba-Galea CA J Biol Chem; 2011 May; 286(20):17945-53. PubMed ID: 21454672 [TBL] [Abstract][Full Text] [Related]
9. Ion channel regulation by phosphoinositides analyzed with VSPs-PI(4,5)P2 affinity, phosphoinositide selectivity, and PI(4,5)P2 pool accessibility. Rjasanow A; Leitner MG; Thallmair V; Halaszovich CR; Oliver D Front Pharmacol; 2015; 6():127. PubMed ID: 26150791 [TBL] [Abstract][Full Text] [Related]
10. Ci-VSP is a depolarization-activated phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate 5'-phosphatase. Halaszovich CR; Schreiber DN; Oliver D J Biol Chem; 2009 Jan; 284(4):2106-13. PubMed ID: 19047057 [TBL] [Abstract][Full Text] [Related]
11. Potential role of voltage-sensing phosphatases in regulation of cell structure through the production of PI(3,4)P2. Yamaguchi S; Kurokawa T; Taira I; Aoki N; Sakata S; Okamura Y; Homma KJ J Cell Physiol; 2014 Apr; 229(4):422-33. PubMed ID: 24038012 [TBL] [Abstract][Full Text] [Related]
12. PTEN phosphatase selectively binds phosphoinositides and undergoes structural changes. Redfern RE; Redfern D; Furgason ML; Munson M; Ross AH; Gericke A Biochemistry; 2008 Feb; 47(7):2162-71. PubMed ID: 18220422 [TBL] [Abstract][Full Text] [Related]
13. PTEN Regulates PI(3,4)P Malek M; Kielkowska A; Chessa T; Anderson KE; Barneda D; Pir P; Nakanishi H; Eguchi S; Koizumi A; Sasaki J; Juvin V; Kiselev VY; Niewczas I; Gray A; Valayer A; Spensberger D; Imbert M; Felisbino S; Habuchi T; Beinke S; Cosulich S; Le Novère N; Sasaki T; Clark J; Hawkins PT; Stephens LR Mol Cell; 2017 Nov; 68(3):566-580.e10. PubMed ID: 29056325 [TBL] [Abstract][Full Text] [Related]
14. Discovery and functional characterization of a neomorphic PTEN mutation. Costa HA; Leitner MG; Sos ML; Mavrantoni A; Rychkova A; Johnson JR; Newton BW; Yee MC; De La Vega FM; Ford JM; Krogan NJ; Shokat KM; Oliver D; Halaszovich CR; Bustamante CD Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13976-81. PubMed ID: 26504226 [TBL] [Abstract][Full Text] [Related]
15. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research. Hobiger K; Friedrich T Front Pharmacol; 2015; 6():20. PubMed ID: 25713537 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the Functional Domains of a Mammalian Voltage-Sensitive Phosphatase. Rosasco MG; Gordon SE; Bajjalieh SM Biophys J; 2015 Dec; 109(12):2480-2491. PubMed ID: 26682807 [TBL] [Abstract][Full Text] [Related]
17. The C-terminal tail inhibitory phosphorylation sites of PTEN regulate its intrinsic catalytic activity and the kinetics of its binding to phosphatidylinositol-4,5-bisphosphate. Chia YC; Catimel B; Lio DS; Ang CS; Peng B; Wu H; Zhu HJ; Cheng HC Arch Biochem Biophys; 2015 Dec; 587():48-60. PubMed ID: 26471078 [TBL] [Abstract][Full Text] [Related]
18. Functional diversity of voltage-sensing phosphatases in two urodele amphibians. Mutua J; Jinno Y; Sakata S; Okochi Y; Ueno S; Tsutsui H; Kawai T; Iwao Y; Okamura Y Physiol Rep; 2014 Jul; 2(7):. PubMed ID: 25347851 [TBL] [Abstract][Full Text] [Related]
19. Loss of PTEN expression does not contribute to PDK-1 activity and PKC activation-loop phosphorylation in Jurkat leukaemic T cells. Freeley M; Park J; Yang KJ; Wange RL; Volkov Y; Kelleher D; Long A Cell Signal; 2007 Dec; 19(12):2444-57. PubMed ID: 17826953 [TBL] [Abstract][Full Text] [Related]
20. AKT1 and PTEN show the highest affinities among phosphoinositide binding proteins for the second messengers PtdIns(3,4,5)P Nelson N; Razeto A; Gilardi A; Grättinger M; Kirchmair J; Jücker M Biochem Biophys Res Commun; 2021 Sep; 568():110-115. PubMed ID: 34214875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]