These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
913 related articles for article (PubMed ID: 2998738)
1. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Reul JM; de Kloet ER Endocrinology; 1985 Dec; 117(6):2505-11. PubMed ID: 2998738 [TBL] [Abstract][Full Text] [Related]
2. Feedback action and tonic influence of corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. De Kloet ER; Reul JM Psychoneuroendocrinology; 1987; 12(2):83-105. PubMed ID: 3037584 [TBL] [Abstract][Full Text] [Related]
3. Function and plasticity of brain corticosteroid receptor systems: action of neuropeptides. de Kloet ER; Reul JM; de Ronde FS; Bloemers M; Ratka A J Steroid Biochem; 1986 Nov; 25(5B):723-31. PubMed ID: 3807361 [TBL] [Abstract][Full Text] [Related]
4. Selective control by corticosterone of serotonin1 receptor capacity in raphe-hippocampal system. De Kloet ER; Sybesma H; Reul HM Neuroendocrinology; 1986; 42(6):513-21. PubMed ID: 3010158 [TBL] [Abstract][Full Text] [Related]
5. Binding characteristics of mineralocorticoid and glucocorticoid receptors in dog brain and pituitary. Reul JM; de Kloet ER; van Sluijs FJ; Rijnberk A; Rothuizen J Endocrinology; 1990 Aug; 127(2):907-15. PubMed ID: 2164924 [TBL] [Abstract][Full Text] [Related]
6. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. Diorio D; Viau V; Meaney MJ J Neurosci; 1993 Sep; 13(9):3839-47. PubMed ID: 8396170 [TBL] [Abstract][Full Text] [Related]
7. Diurnal differences in basal and acute stress levels of type I and type II adrenal steroid receptor activation in neural and immune tissues. Spencer RL; Miller AH; Moday H; Stein M; McEwen BS Endocrinology; 1993 Nov; 133(5):1941-50. PubMed ID: 8404640 [TBL] [Abstract][Full Text] [Related]
8. Rapid corticosteroid-dependent regulation of mineralocorticoid receptor protein expression in rat brain. Kalman BA; Spencer RL Endocrinology; 2002 Nov; 143(11):4184-95. PubMed ID: 12399411 [TBL] [Abstract][Full Text] [Related]
9. Characterization of rat brain aldosterone receptors reveals high affinity for corticosterone. Beaumont K; Fanestil DD Endocrinology; 1983 Dec; 113(6):2043-51. PubMed ID: 6227474 [TBL] [Abstract][Full Text] [Related]
10. Disruption of mineralocorticoid receptor function increases corticosterone responding to a mild, but not moderate, psychological stressor. Pace TW; Spencer RL Am J Physiol Endocrinol Metab; 2005 Jun; 288(6):E1082-8. PubMed ID: 15671079 [TBL] [Abstract][Full Text] [Related]
11. Differential regulation of type II corticosteroid receptor messenger ribonucleic acid expression in the rat anterior pituitary and hippocampus. Sheppard KE; Roberts JL; Blum M Endocrinology; 1990 Jul; 127(1):431-9. PubMed ID: 2361479 [TBL] [Abstract][Full Text] [Related]
12. Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Levitt NS; Lindsay RS; Holmes MC; Seckl JR Neuroendocrinology; 1996 Dec; 64(6):412-8. PubMed ID: 8990073 [TBL] [Abstract][Full Text] [Related]
13. Chronic estrogen-induced alterations in adrenocorticotropin and corticosterone secretion, and glucocorticoid receptor-mediated functions in female rats. Burgess LH; Handa RJ Endocrinology; 1992 Sep; 131(3):1261-9. PubMed ID: 1324155 [TBL] [Abstract][Full Text] [Related]
14. Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. Reul JM; de Kloet ER J Steroid Biochem; 1986 Jan; 24(1):269-72. PubMed ID: 3702410 [TBL] [Abstract][Full Text] [Related]
15. Differential response of type I and type II corticosteroid receptors to changes in plasma steroid level and circadian rhythmicity. Reul JM; van den Bosch FR; de Kloet ER Neuroendocrinology; 1987 May; 45(5):407-12. PubMed ID: 3587523 [TBL] [Abstract][Full Text] [Related]
16. Limited brain diffusion of the glucocorticoid receptor agonist RU28362 following i.c.v. administration: implications for i.c.v. drug delivery and glucocorticoid negative feedback in the hypothalamic-pituitary-adrenal axis. Francis AB; Pace TW; Ginsberg AB; Rubin BA; Spencer RL Neuroscience; 2006 Sep; 141(3):1503-15. PubMed ID: 16806720 [TBL] [Abstract][Full Text] [Related]
17. The role of the hippocampal mineralocorticoid and glucocorticoid receptors in the hypothalamo-pituitary-adrenal axis of the aged Fisher rat. Morano MI; Vázquez DM; Akil H Mol Cell Neurosci; 1994 Oct; 5(5):400-12. PubMed ID: 7820364 [TBL] [Abstract][Full Text] [Related]
18. Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: association with reduction in glucocorticoid receptor mRNA levels. Makino S; Smith MA; Gold PW Endocrinology; 1995 Aug; 136(8):3299-309. PubMed ID: 7628364 [TBL] [Abstract][Full Text] [Related]
19. Brain corticosteroid receptor balance in health and disease. De Kloet ER; Vreugdenhil E; Oitzl MS; Joëls M Endocr Rev; 1998 Jun; 19(3):269-301. PubMed ID: 9626555 [TBL] [Abstract][Full Text] [Related]
20. Regulatory role of glucocorticoids and glucocorticoid receptor mRNA levels on tyrosine hydroxylase gene expression in the locus coeruleus during repeated immobilization stress. Makino S; Smith MA; Gold PW Brain Res; 2002 Jul; 943(2):216-23. PubMed ID: 12101044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]