BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

737 related articles for article (PubMed ID: 29987496)

  • 61. Effects of metal-contaminated soil on the performance of young trees growing in model ecosystems under field conditions.
    Hermle S; Günthardt-Goerg MS; Schulin R
    Environ Pollut; 2006 Nov; 144(2):703-14. PubMed ID: 16540218
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies.
    MacFarlane GR; Koller CE; Blomberg SP
    Chemosphere; 2007 Nov; 69(9):1454-64. PubMed ID: 17560628
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk)Vierh: biological indication potential.
    MacFarlane GR; Pulkownik A; Burchett MD
    Environ Pollut; 2003; 123(1):139-51. PubMed ID: 12663214
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of Lead and Copper on Photosynthetic Apparatus in Citrus (
    Giannakoula A; Therios I; Chatzissavvidis C
    Plants (Basel); 2021 Jan; 10(1):. PubMed ID: 33466929
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Combined toxicity of cadmium and copper in Avicennia marina seedlings and the regulation of exogenous jasmonic acid.
    Yan Z; Li X; Chen J; Tam NF
    Ecotoxicol Environ Saf; 2015 Mar; 113():124-32. PubMed ID: 25497768
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Physiological and biochemical response to drought stress in the leaves of Aegiceras corniculatum and Kandelia obovata.
    Guan GF; Wang YS; Cheng H; Jiang ZY; Fei J
    Ecotoxicology; 2015 Oct; 24(7-8):1668-76. PubMed ID: 25956979
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China.
    Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Silicon-Mediated Enhancement of Heavy Metal Tolerance in Rice at Different Growth Stages.
    Huang F; Wen XH; Cai YX; Cai KZ
    Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30297625
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.
    Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y
    Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Characteristics of Iron Plaque and Its Heavy Metal Enrichment in Typical Mangrove Plants in Shenzhen Bay, China].
    Shen XX; Li RL; Chai MW; Qiu GY
    Huan Jing Ke Xue; 2018 Apr; 39(4):1851-1860. PubMed ID: 29965012
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants.
    Li X; Yang Y; Jia L; Chen H; Wei X
    Ecotoxicol Environ Saf; 2013 Mar; 89():150-7. PubMed ID: 23260180
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Tolerance and vegetation restoration prospect of seedlings of five oak species for Pb/Zn mine tailing].
    Shi X; Wang SF; Chen YT; Xu QD; Sun HJ; An R; Lu XH; Lu Y; Fan SJ
    Ying Yong Sheng Tai Xue Bao; 2019 Dec; 30(12):4091-4098. PubMed ID: 31840453
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements.
    Rivelli AR; De Maria S; Puschenreiter M; Gherbin P
    Int J Phytoremediation; 2012 Apr; 14(4):320-34. PubMed ID: 22567714
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Copper, lead and zinc interactions during phytoextraction using Acer platanoides L.-a pot trial.
    Mleczek M; Budka A; Gąsecka M; Budzyńska S; Drzewiecka K; Magdziak Z; Rutkowski P; Goliński P; Niedzielski P
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):27191-27207. PubMed ID: 36378369
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Copper-zinc coergisms and metal toxicity at predefined ratio concentrations: Predictions based on synergistic ratio model.
    Obinna Obiakor M; Damian Ezeonyejiaku C
    Ecotoxicol Environ Saf; 2015 Jul; 117():149-54. PubMed ID: 25863353
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Zinc oxide nanocatalyst mediates cadmium and lead toxicity tolerance mechanism by differential regulation of photosynthetic machinery and antioxidant enzymes level in cotton seedlings.
    N P; N G; T M; S V S; P V
    Toxicol Rep; 2021; 8():295-302. PubMed ID: 33552928
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Physiological and enrichment characteristics of Paulownia fortunei seedlings under zinc, cadmium and their combined stress].
    Zhu X; Cheng H; Ji L; Ru G; Zhao Z; Cai Y; Wen D
    Sheng Wu Gong Cheng Xue Bao; 2021 Jul; 37(7):2463-2473. PubMed ID: 34327911
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Tolerance of the Australian halophyte, beaded samphire, Sarcocornia quinqueflora, to Pb and Zn under glasshouse conditions: Evaluating metal uptake and partitioning, photosynthetic performance, biomass, and growth.
    Voigt RAL; MacFarlane GR
    Aquat Toxicol; 2024 May; 270():106887. PubMed ID: 38461756
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Toxicity assessment of soil contaminated by heavy metals using algae growth inhibition test].
    Li B; Li P; Wang J; Zhang H; Yang G; Xu D; Su B
    Ying Yong Sheng Tai Xue Bao; 2002 Mar; 13(3):331-4. PubMed ID: 12132165
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Growth and physiological response of Kandelia obovata and Bruguiera sexangula seedlings to aluminum stress.
    Ma L; Yang S
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):43251-43266. PubMed ID: 35091926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.