BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29987734)

  • 1. Generation of Mutants of Nuclear-Encoded Plastid Proteins Using CRISPR/Cas9 in the Diatom Phaeodactylum tricornutum.
    Allorent G; Guglielmino E; Giustini C; Courtois F
    Methods Mol Biol; 2018; 1829():367-378. PubMed ID: 29987734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Gene Editing of Nuclear-Encoded Plastid Proteins in Phaeodactylum tricornutum via CRISPR/Cas9.
    Giustini C; Angulo J; Courtois F; Allorent G
    Methods Mol Biol; 2024; 2776():269-287. PubMed ID: 38502511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized Proteolistic Protocol for the Delivery of the Cas9 Protein in Phaeodactylum tricornutum.
    Russo MT; Santin A; Rogato A; Ferrante MI
    Methods Mol Biol; 2022; 2498():327-336. PubMed ID: 35727554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgene-free genome editing in marine algae by bacterial conjugation - comparison with biolistic CRISPR/Cas9 transformation.
    Sharma AK; Nymark M; Sparstad T; Bones AM; Winge P
    Sci Rep; 2018 Sep; 8(1):14401. PubMed ID: 30258061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A CRISPR/Cas9 system adapted for gene editing in marine algae.
    Nymark M; Sharma AK; Sparstad T; Bones AM; Winge P
    Sci Rep; 2016 Apr; 6():24951. PubMed ID: 27108533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Expanded Plasmid-Based Genetic Toolbox Enables Cas9 Genome Editing and Stable Maintenance of Synthetic Pathways in Phaeodactylum tricornutum.
    Slattery SS; Diamond A; Wang H; Therrien JA; Lant JT; Jazey T; Lee K; Klassen Z; Desgagné-Penix I; Karas BJ; Edgell DR
    ACS Synth Biol; 2018 Feb; 7(2):328-338. PubMed ID: 29298053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step generation of multiple gene knock-outs in the diatom Phaeodactylum tricornutum by DNA-free genome editing.
    Serif M; Dubois G; Finoux AL; Teste MA; Jallet D; Daboussi F
    Nat Commun; 2018 Sep; 9(1):3924. PubMed ID: 30254261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome editing in diatoms: achievements and goals.
    Kroth PG; Bones AM; Daboussi F; Ferrante MI; Jaubert M; Kolot M; Nymark M; Río Bártulos C; Ritter A; Russo MT; Serif M; Winge P; Falciatore A
    Plant Cell Rep; 2018 Oct; 37(10):1401-1408. PubMed ID: 30167805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9 Gene Editing in the Marine Diatom
    Nymark M; Sharma AK; Hafskjold MCG; Sparstad T; Bones AM; Winge P
    Bio Protoc; 2017 Aug; 7(15):e2442. PubMed ID: 34541161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous knockout of multiple LHCF genes using single sgRNAs and engineering of a high-fidelity Cas9 for precise genome editing in marine algae.
    Sharma AK; Nymark M; Flo S; Sparstad T; Bones AM; Winge P
    Plant Biotechnol J; 2021 Aug; 19(8):1658-1669. PubMed ID: 33759354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing CRISPR/Cas9 for the Diatom
    Stukenberg D; Zauner S; Dell'Aquila G; Maier UG
    Front Plant Sci; 2018; 9():740. PubMed ID: 29928285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biolistic Delivery of CRISPR/Cas9 with Ribonucleoprotein Complex in Wheat.
    Liang Z; Chen K; Gao C
    Methods Mol Biol; 2019; 1917():327-335. PubMed ID: 30610647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency generation of fertile transplastomic Arabidopsis plants.
    Ruf S; Forner J; Hasse C; Kroop X; Seeger S; Schollbach L; Schadach A; Bock R
    Nat Plants; 2019 Mar; 5(3):282-289. PubMed ID: 30778165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins.
    Liang Z; Chen K; Zhang Y; Liu J; Yin K; Qiu JL; Gao C
    Nat Protoc; 2018 Mar; 13(3):413-430. PubMed ID: 29388938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed CRISPR/Cas9 editing of the long-chain acyl-CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids.
    Hao X; Chen W; Amato A; Jouhet J; Maréchal E; Moog D; Hu H; Jin H; You L; Huang F; Moosburner M; Allen AE; Gong Y
    New Phytol; 2022 Feb; 233(4):1797-1812. PubMed ID: 34882804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of genomic changes in a CRISPR/Cas9
    Russo MT; Aiese Cigliano R; Sanseverino W; Ferrante MI
    PeerJ; 2018; 6():e5507. PubMed ID: 30310734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9 System for Genome Engineering of Photosynthetic Microalgae.
    Patel VK; Soni N; Prasad V; Sapre A; Dasgupta S; Bhadra B
    Mol Biotechnol; 2019 Aug; 61(8):541-561. PubMed ID: 31140149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroporation Transformation Protocol for Phaeodactylum tricornutum.
    Hu H; Pan Y
    Methods Mol Biol; 2020; 2050():163-167. PubMed ID: 31468490
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Græsholt C; Brembu T; Volpe C; Bartosova Z; Serif M; Winge P; Nymark M
    Mar Drugs; 2024 Apr; 22(4):. PubMed ID: 38667802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation.
    Zhang C; Hu H
    Mar Genomics; 2014 Aug; 16():63-6. PubMed ID: 24269346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.