These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Fructose diet treatment in mice induces fundamental disturbance of cardiomyocyte Ca2+ handling and myofilament responsiveness. Mellor KM; Wendt IR; Ritchie RH; Delbridge LM Am J Physiol Heart Circ Physiol; 2012 Feb; 302(4):H964-72. PubMed ID: 22198170 [TBL] [Abstract][Full Text] [Related]
3. High-mobility group box 1 (HMGB1) impaired cardiac excitation-contraction coupling by enhancing the sarcoplasmic reticulum (SR) Ca(2+) leak through TLR4-ROS signaling in cardiomyocytes. Zhang C; Mo M; Ding W; Liu W; Yan D; Deng J; Luo X; Liu J J Mol Cell Cardiol; 2014 Sep; 74():260-73. PubMed ID: 24937603 [TBL] [Abstract][Full Text] [Related]
4. Assessment of Myofilament Ca2+ Sensitivity Underlying Cardiac Excitation-contraction Coupling. Zhao ZH; Jin CL; Jang JH; Wu YN; Kim SJ; Jin HH; Cui L; Zhang YH J Vis Exp; 2016 Aug; (114):. PubMed ID: 27501399 [TBL] [Abstract][Full Text] [Related]
5. Prolonged mechanical unloading reduces myofilament sensitivity to calcium and sarcoplasmic reticulum calcium uptake leading to contractile dysfunction. Soppa GK; Lee J; Stagg MA; Siedlecka U; Youssef S; Yacoub MH; Terracciano CM J Heart Lung Transplant; 2008 Aug; 27(8):882-9. PubMed ID: 18656802 [TBL] [Abstract][Full Text] [Related]
6. The effect of SN-6, a novel sodium-calcium exchange inhibitor, on contractility and calcium handling in isolated failing rat ventricular myocytes. Gandhi A; Siedlecka U; Shah AP; Navaratnarajah M; Yacoub MH; Terracciano CM Cardiovasc Ther; 2013 Dec; 31(6):e115-24. PubMed ID: 24106913 [TBL] [Abstract][Full Text] [Related]
9. In vitro model to study the effects of matrix stiffening on Ca van Deel ED; Najafi A; Fontoura D; Valent E; Goebel M; Kardux K; Falcão-Pires I; van der Velden J J Physiol; 2017 Jul; 595(14):4597-4610. PubMed ID: 28485491 [TBL] [Abstract][Full Text] [Related]
10. Elevated Ca2+ transients and increased myofibrillar power generation cause cardiac hypercontractility in a model of Noonan syndrome with multiple lentigines. Clay SA; Domeier TL; Hanft LM; McDonald KS; Krenz M Am J Physiol Heart Circ Physiol; 2015 May; 308(9):H1086-95. PubMed ID: 25724491 [TBL] [Abstract][Full Text] [Related]
11. Characterization and mechanism of P2X receptor-mediated increase in cardiac myocyte contractility. Shen JB; Shutt R; Pappano A; Liang BT Am J Physiol Heart Circ Physiol; 2007 Nov; 293(5):H3056-62. PubMed ID: 17873021 [TBL] [Abstract][Full Text] [Related]
12. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model. Negroni JA; Morotti S; Lascano EC; Gomes AV; Grandi E; Puglisi JL; Bers DM J Mol Cell Cardiol; 2015 Apr; 81():162-75. PubMed ID: 25724724 [TBL] [Abstract][Full Text] [Related]
13. C1q/tumor necrosis factor-related protein-3 enhances the contractility of cardiomyocyte by increasing calcium sensitivity. Zhang CL; Chen ZJ; Feng H; Zhao Q; Cao YP; Li L; Wang JY; Zhang Y; Wu LL Cell Calcium; 2017 Sep; 66():90-97. PubMed ID: 28807153 [TBL] [Abstract][Full Text] [Related]
14. Polydatin modulates Ca(2+) handling, excitation-contraction coupling and β-adrenergic signaling in rat ventricular myocytes. Deng J; Liu W; Wang Y; Dong M; Zheng M; Liu J J Mol Cell Cardiol; 2012 Nov; 53(5):646-56. PubMed ID: 22921781 [TBL] [Abstract][Full Text] [Related]
15. Calcium/Calmodulin Protein Kinase II-Dependent Ryanodine Receptor Phosphorylation Mediates Cardiac Contractile Dysfunction Associated With Sepsis. Sepúlveda M; Gonano LA; Viotti M; Morell M; Blanco P; López Alarcón M; Peroba Ramos I; Bastos Carvalho A; Medei E; Vila Petroff M Crit Care Med; 2017 Apr; 45(4):e399-e408. PubMed ID: 27648519 [TBL] [Abstract][Full Text] [Related]
16. Sarcoplasmic reticulum calcium overloading in junctin deficiency enhances cardiac contractility but increases ventricular automaticity. Yuan Q; Fan GC; Dong M; Altschafl B; Diwan A; Ren X; Hahn HH; Zhao W; Waggoner JR; Jones LR; Jones WK; Bers DM; Dorn GW; Wang HS; Valdivia HH; Chu G; Kranias EG Circulation; 2007 Jan; 115(3):300-9. PubMed ID: 17224479 [TBL] [Abstract][Full Text] [Related]
17. Myocyte shape regulates lateral registry of sarcomeres and contractility. Kuo PL; Lee H; Bray MA; Geisse NA; Huang YT; Adams WJ; Sheehy SP; Parker KK Am J Pathol; 2012 Dec; 181(6):2030-7. PubMed ID: 23159216 [TBL] [Abstract][Full Text] [Related]
18. Selective phosphorylation of PKA targets after β-adrenergic receptor stimulation impairs myofilament function in Mybpc3-targeted HCM mouse model. Najafi A; Sequeira V; Helmes M; Bollen IA; Goebel M; Regan JA; Carrier L; Kuster DW; Van Der Velden J Cardiovasc Res; 2016 May; 110(2):200-14. PubMed ID: 26825555 [TBL] [Abstract][Full Text] [Related]
19. Electrically stimulated in vitro heart cell mimic of acute exercise reveals novel immediate cellular responses to exercise: Reduced contractility and metabolism, but maintained calcium cycling and increased myofilament calcium sensitivity. Costa ADS; Ghouri I; Johnston A; McGlynn K; McNair A; Bowman P; Malik N; Hurren J; Bingelis T; Dunne M; Smith GL; Kemi OJ Cell Biochem Funct; 2023 Dec; 41(8):1147-1161. PubMed ID: 37665041 [TBL] [Abstract][Full Text] [Related]
20. Cell shortening and calcium dynamics in epicardial and endocardial myocytes from the left ventricle of Goto-Kakizaki type 2 diabetic rats. Smail M; Al Kury L; Qureshi MA; Shmygol A; Oz M; Singh J; Howarth FC Exp Physiol; 2018 Apr; 103(4):502-511. PubMed ID: 29363193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]