These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29988103)

  • 1. Evoking and tracking zebrafish eye movement in multiple larvae with ZebEyeTrack.
    Dehmelt FA; von Daranyi A; Leyden C; Arrenberg AB
    Nat Protoc; 2018 Jul; 13(7):1539-1568. PubMed ID: 29988103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of optokinetic response in zebrafish by computer-based eye tracking.
    Huber-Reggi SP; Mueller KP; Neuhauss SC
    Methods Mol Biol; 2013; 935():139-60. PubMed ID: 23150366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An open-source method to analyze optokinetic reflex responses in larval zebrafish.
    Scheetz SD; Shao E; Zhou Y; Cario CL; Bai Q; Burton EA
    J Neurosci Methods; 2018 Jan; 293():329-337. PubMed ID: 29042258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response.
    Rinner O; Rick JM; Neuhauss SC
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):137-42. PubMed ID: 15623766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Publisher Correction: Evoking and tracking zebrafish eye movement in multiple larvae with ZebEyeTrack.
    Dehmelt FA; von Daranyi A; Leyden C; Arrenberg AB
    Nat Protoc; 2019 Jul; 14(7):2258. PubMed ID: 30131593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stytra: An open-source, integrated system for stimulation, tracking and closed-loop behavioral experiments.
    Štih V; Petrucco L; Kist AM; Portugues R
    PLoS Comput Biol; 2019 Apr; 15(4):e1006699. PubMed ID: 30958870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of larval zebrafish motor function in multiwell plates using open-source MATLAB applications.
    Zhou Y; Cattley RT; Cario CL; Bai Q; Burton EA
    Nat Protoc; 2014 Jul; 9(7):1533-48. PubMed ID: 24901738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of eye movements in the zebrafish (Danio rerio).
    Easter SS; Nicola GN
    Dev Psychobiol; 1997 Dec; 31(4):267-76. PubMed ID: 9413674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative approach to study the adaptation of rhythmic eye movements and the resulting tonic eye deviation in larval zebrafish.
    Lin TF; Huang MY
    J Neurosci Res; 2023 Sep; 101(9):1504-1518. PubMed ID: 37313595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the optokinetic response of zebrafish larvae.
    Brockerhoff SE
    Nat Protoc; 2006; 1(5):2448-51. PubMed ID: 17406490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using the optokinetic response to study visual function of zebrafish.
    Zou SQ; Yin W; Zhang MJ; Hu CR; Huang YB; Hu B
    J Vis Exp; 2010 Feb; (36):. PubMed ID: 20125082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A system to measure the Optokinetic and Optomotor response in mice.
    Kretschmer F; Sajgo S; Kretschmer V; Badea TC
    J Neurosci Methods; 2015 Dec; 256():91-105. PubMed ID: 26279344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VisioTracker, an innovative automated approach to oculomotor analysis.
    Mueller KP; Schnaedelbach OD; Russig HD; Neuhauss SC
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22005608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PyOKR: A Semi-Automated Method for Quantifying Optokinetic Reflex Tracking Ability.
    Kiraly JK; Harris SC; Al-Khindi T; Dunn FA; Kolodkin AL
    J Vis Exp; 2024 Apr; (206):. PubMed ID: 38682904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic multiple zebrafish larvae tracking in unconstrained microscopic video conditions.
    Wang X; Cheng E; Burnett IS; Huang Y; Wlodkowic D
    Sci Rep; 2017 Dec; 7(1):17596. PubMed ID: 29242568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method for automated tracking and quantification of adult zebrafish behaviour during anxiety.
    Nema S; Hasan W; Bhargava A; Bhargava Y
    J Neurosci Methods; 2016 Sep; 271():65-75. PubMed ID: 27396369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput screening of zebrafish embryos using automated heart detection and imaging.
    Spomer W; Pfriem A; Alshut R; Just S; Pylatiuk C
    J Lab Autom; 2012 Dec; 17(6):435-42. PubMed ID: 23053930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A behavioral assay to measure responsiveness of zebrafish to changes in light intensities.
    Emran F; Rihel J; Dowling JE
    J Vis Exp; 2008 Oct; (20):. PubMed ID: 19078942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unravelling Stimulus Direction Dependency of Visual Acuity in Larval Zebrafish by Consistent Eye Displacements Upon Optokinetic Stimulation.
    Bögli SY; Afthinos M; Bertolini G; Straumann D; Huang MY
    Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):1721-7. PubMed ID: 27064392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Acceleration of Visually Evoked Smooth Eye Movements in Mice.
    Kodama T; du Lac S
    J Neurosci; 2016 Jun; 36(25):6836-49. PubMed ID: 27335412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.