These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 29988396)

  • 1. Impact of Intestinal Peptides on the Enteric Nervous System: Novel Approaches to Control Glucose Metabolism and Food Intake.
    Abot A; Cani PD; Knauf C
    Front Endocrinol (Lausanne); 2018; 9():328. PubMed ID: 29988396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inflammation and Gut-Brain Axis During Type 2 Diabetes: Focus on the Crosstalk Between Intestinal Immune Cells and Enteric Nervous System.
    Bessac A; Cani PD; Meunier E; Dietrich G; Knauf C
    Front Neurosci; 2018; 12():725. PubMed ID: 30364179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the Enteric Nervous System to Treat Metabolic Disorders? "Enterosynes" as Therapeutic Gut Factors.
    Knauf C; Abot A; Wemelle E; Cani PD
    Neuroendocrinology; 2020; 110(1-2):139-146. PubMed ID: 31280267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apelin targets gut contraction to control glucose metabolism via the brain.
    Fournel A; Drougard A; Duparc T; Marlin A; Brierley SM; Castro J; Le-Gonidec S; Masri B; Colom A; Lucas A; Rousset P; Cenac N; Vergnolle N; Valet P; Cani PD; Knauf C
    Gut; 2017 Feb; 66(2):258-269. PubMed ID: 26565000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Gut Microbiota in Neuroendocrine Regulation of Carbohydrate and Lipid Metabolism via the Microbiota-Gut-Brain-Liver Axis.
    Wang SZ; Yu YJ; Adeli K
    Microorganisms; 2020 Apr; 8(4):. PubMed ID: 32272588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galanin enhances systemic glucose metabolism through enteric Nitric Oxide Synthase-expressed neurons.
    Abot A; Lucas A; Bautzova T; Bessac A; Fournel A; Le-Gonidec S; Valet P; Moro C; Cani PD; Knauf C
    Mol Metab; 2018 Apr; 10():100-108. PubMed ID: 29428595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-gut-microbiota axis in Parkinson's disease.
    Mulak A; Bonaz B
    World J Gastroenterol; 2015 Oct; 21(37):10609-20. PubMed ID: 26457021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of new enterosynes using prebiotics: roles of bioactive lipids and mu-opioid receptor signalling in humans and mice.
    Abot A; Wemelle E; Laurens C; Paquot A; Pomie N; Carper D; Bessac A; Mas Orea X; Fremez C; Fontanie M; Lucas A; Lesage J; Everard A; Meunier E; Dietrich G; Muccioli GG; Moro C; Cani PD; Knauf C
    Gut; 2021 Jun; 70(6):1078-1087. PubMed ID: 33020209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient-induced changes in the phenotype and function of the enteric nervous system.
    Neunlist M; Schemann M
    J Physiol; 2014 Jul; 592(14):2959-65. PubMed ID: 24907307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System.
    Obata Y; Pachnis V
    Gastroenterology; 2016 Nov; 151(5):836-844. PubMed ID: 27521479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems.
    Carabotti M; Scirocco A; Maselli MA; Severi C
    Ann Gastroenterol; 2015; 28(2):203-209. PubMed ID: 25830558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gut-brain axis.
    Romijn JA; Corssmit EP; Havekes LM; Pijl H
    Curr Opin Clin Nutr Metab Care; 2008 Jul; 11(4):518-21. PubMed ID: 18542016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gut-brain axis: regulation of glucose metabolism.
    Heijboer AC; Pijl H; Van den Hoek AM; Havekes LM; Romijn JA; Corssmit EP
    J Neuroendocrinol; 2006 Dec; 18(12):883-94. PubMed ID: 17076764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbiota-gut-brain axis: enteroendocrine cells and the enteric nervous system form an interface between the microbiota and the central nervous system.
    Kuwahara A; Matsuda K; Kuwahara Y; Asano S; Inui T; Marunaka Y
    Biomed Res; 2020; 41(5):199-216. PubMed ID: 33071256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of food-derived bioactive peptides on gut function and health.
    Bao X; Wu J
    Food Res Int; 2021 Sep; 147():110485. PubMed ID: 34399481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The gut microbiota to the brain axis in the metabolic control.
    Grasset E; Burcelin R
    Rev Endocr Metab Disord; 2019 Dec; 20(4):427-438. PubMed ID: 31656993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis.
    Holzer P; Reichmann F; Farzi A
    Neuropeptides; 2012 Dec; 46(6):261-74. PubMed ID: 22979996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What goes around comes around: novel pharmacological targets in the gut-brain axis.
    González-Arancibia C; Escobar-Luna J; Barrera-Bugueño C; Díaz-Zepeda C; González-Toro MP; Olavarría-Ramírez L; Zanelli-Massai F; Gotteland M; Bravo JA; Julio-Pieper M
    Therap Adv Gastroenterol; 2016 May; 9(3):339-53. PubMed ID: 27134664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides.
    Covasa M; Stephens RW; Toderean R; Cobuz C
    Front Endocrinol (Lausanne); 2019; 10():82. PubMed ID: 30837951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nature of catecholamine-containing neurons in the enteric nervous system in relationship with organogenesis, normal human anatomy and neurodegeneration.
    Natale G; Ryskalin L; Busceti CL; Biagioni F; Fornai F
    Arch Ital Biol; 2017 Sep; 155(3):118-130. PubMed ID: 29220864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.