These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 29988595)

  • 1. Effect of the volatile anesthetic agent isoflurane on lateral diffusion of cell membrane proteins.
    Ono J; Fushimi S; Suzuki S; Ameno K; Kinoshita H; Shirakami G; Kabayama K
    FEBS Open Bio; 2018 Jul; 8(7):1127-1134. PubMed ID: 29988595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence Recovery After Photobleaching Analysis of the Diffusional Mobility of Plasma Membrane Proteins: HER3 Mobility in Breast Cancer Cell Membranes.
    Sarkar M; Koland JG
    Methods Mol Biol; 2016; 1376():97-105. PubMed ID: 26552678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using fluorescence recovery after photobleaching to measure lipid diffusion in membranes.
    Mullineaux CW; Kirchhoff H
    Methods Mol Biol; 2007; 400():267-75. PubMed ID: 17951740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ras diffusion is sensitive to plasma membrane viscosity.
    Goodwin JS; Drake KR; Remmert CL; Kenworthy AK
    Biophys J; 2005 Aug; 89(2):1398-410. PubMed ID: 15923235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deoxygenation affects fluorescence photobleaching recovery measurements of red cell membrane protein lateral mobility.
    Corbett JD; Cho MR; Golan DE
    Biophys J; 1994 Jan; 66(1):25-30. PubMed ID: 8130343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of cross-linked glycosylphosphatidylinositol-anchored proteins to discrete actin-associated sites and cholesterol-dependent domains.
    Suzuki K; Sheetz MP
    Biophys J; 2001 Oct; 81(4):2181-9. PubMed ID: 11566789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR study of volatile anesthetic binding to nicotinic acetylcholine receptors.
    Xu Y; Seto T; Tang P; Firestone L
    Biophys J; 2000 Feb; 78(2):746-51. PubMed ID: 10653787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane fluidity of blood cells.
    Hollán S
    Haematologia (Budap); 1996; 27(3):109-27. PubMed ID: 14653448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The differential effects of volatile anesthetics on electrophysiological and biochemical changes during and recovery after hypoxia in rat hippocampal slice CA1 pyramidal cells.
    Wang J; Meng F; Cottrell JE; Kass IS
    Neuroscience; 2006 Jul; 140(3):957-67. PubMed ID: 16580780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane.
    Vrljic M; Nishimura SY; Moerner WE; McConnell HM
    Biophys J; 2005 Jan; 88(1):334-47. PubMed ID: 15516525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conformational model for the action of general anesthetics at the membrane level. II. Experimental observations on the effects of anesthetics on lipid fluidity and lipid protein interactions.
    Lenaz G; Mazzanti L; Curatola G; Bertoli E; Bigi A; Zolese G
    Ital J Biochem; 1978; 27(6):401-30. PubMed ID: 755801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the roles of ordered lipid microdomains in post-endocytic trafficking of glycosyl-phosphatidylinositol-anchored proteins in mammalian fibroblasts.
    Refaei M; Leventis R; Silvius JR
    Traffic; 2011 Aug; 12(8):1012-24. PubMed ID: 21696526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol-dependent retention of GPI-anchored proteins in endosomes.
    Mayor S; Sabharanjak S; Maxfield FR
    EMBO J; 1998 Aug; 17(16):4626-38. PubMed ID: 9707422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TRH-receptor mobility and function in intact and cholesterol-depleted plasma membrane of HEK293 cells stably expressing TRH-R-eGFP.
    Brejchová J; Sýkora J; Ostašov P; Merta L; Roubalová L; Janáček J; Hof M; Svoboda P
    Biochim Biophys Acta; 2015 Mar; 1848(3):781-96. PubMed ID: 25485475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural mosaicism on the submicron scale in the plasma membrane.
    Simson R; Yang B; Moore SE; Doherty P; Walsh FS; Jacobson KA
    Biophys J; 1998 Jan; 74(1):297-308. PubMed ID: 9449330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral mobility in membranes as detected by fluorescence recovery after photobleaching.
    Yguerabide J; Schmidt JA; Yguerabide EE
    Biophys J; 1982 Oct; 40(1):69-75. PubMed ID: 7139035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane.
    Sheets ED; Lee GM; Simson R; Jacobson K
    Biochemistry; 1997 Oct; 36(41):12449-58. PubMed ID: 9376349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateral diffusion of membrane proteins.
    Ramadurai S; Holt A; Krasnikov V; van den Bogaart G; Killian JA; Poolman B
    J Am Chem Soc; 2009 Sep; 131(35):12650-6. PubMed ID: 19673517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods to measure the lateral diffusion of membrane lipids and proteins.
    Chen Y; Lagerholm BC; Yang B; Jacobson K
    Methods; 2006 Jun; 39(2):147-53. PubMed ID: 16846741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel applications for glycosylphosphatidylinositol-anchored proteins in pharmaceutical and industrial biotechnology.
    Müller G
    Mol Membr Biol; 2011 Apr; 28(3):187-205. PubMed ID: 21413835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.