These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29988731)

  • 1. Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance.
    Gleadall A; Visscher D; Yang J; Thomas D; Segal J
    Burns Trauma; 2018; 6():19. PubMed ID: 29988731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.
    Jammalamadaka U; Tappa K
    J Funct Biomater; 2018 Mar; 9(1):. PubMed ID: 29494503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration.
    Costa PF; Puga AM; Díaz-Gomez L; Concheiro A; Busch DH; Alvarez-Lorenzo C
    Int J Pharm; 2015 Dec; 496(2):541-50. PubMed ID: 26520408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Bioprinting Technologies for Tissue Engineering Applications.
    Gu BK; Choi DJ; Park SJ; Kim YJ; Kim CH
    Adv Exp Med Biol; 2018; 1078():15-28. PubMed ID: 30357616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gradient Poly(ethylene glycol) Diacrylate and Cellulose Nanocrystals Tissue Engineering Composite Scaffolds via Extrusion Bioprinting.
    Frost BA; Sutliff BP; Thayer P; Bortner MJ; Foster EJ
    Front Bioeng Biotechnol; 2019; 7():280. PubMed ID: 31681754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering.
    Tytgat L; Van Damme L; Van Hoorick J; Declercq H; Thienpont H; Ottevaere H; Blondeel P; Dubruel P; Van Vlierberghe S
    Acta Biomater; 2019 Aug; 94():340-350. PubMed ID: 31136829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Biomaterials Used in Medical 3D Printing Techniques.
    Tappa K; Jammalamadaka U
    J Funct Biomater; 2018 Feb; 9(1):. PubMed ID: 29414913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3-dimensional bioprinting for tissue engineering applications.
    Gu BK; Choi DJ; Park SJ; Kim MS; Kang CM; Kim CH
    Biomater Res; 2016; 20():12. PubMed ID: 27114828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of CAD and Voxel-Based Modelling Methodologies for the Mechanical Simulation of Extrusion-Based 3D Printed Scaffolds.
    Vega G; Paz R; Gleadall A; Monzón M; Alemán-Domínguez ME
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intervertebral Disc Tissue Engineering Using Additive Manufacturing.
    Yoshida M; Turner PR; Cabral JD
    Gels; 2022 Dec; 9(1):. PubMed ID: 36661793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives.
    Roseti L; Parisi V; Petretta M; Cavallo C; Desando G; Bartolotti I; Grigolo B
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():1246-1262. PubMed ID: 28575964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the extrudate swell in melt extrusion additive manufacturing of 3D scaffolds: a designed experiment.
    Yousefi AM; Smucker B; Naber A; Wyrick C; Shaw C; Bennett K; Szekely S; Focke C; Wood KA
    J Biomater Sci Polym Ed; 2018 Feb; 29(3):195-216. PubMed ID: 29161997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs.
    Ji S; Guvendiren M
    Front Bioeng Biotechnol; 2017; 5():23. PubMed ID: 28424770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Thermoplastic 3D-Printed Scaffolds for Bone Tissue Engineering: Influence of Parameters of "Hidden" Importance in the Physical Properties of Scaffolds.
    Cubo-Mateo N; Rodríguez-Lorenzo LM
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32668729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of a Short Carbon Fibre-Reinforced Polyamide and Comparison of Two Manufacturing Processes: Fused Deposition Modelling (FDM) and Polymer Injection Moulding (PIM).
    Verdejo de Toro E; Coello Sobrino J; Martínez Martínez A; Miguel Eguía V; Ayllón Pérez J
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32028619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds.
    Zhang B; Cristescu R; Chrisey DB; Narayan RJ
    Int J Bioprint; 2020; 6(1):211. PubMed ID: 32596549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive manufacturing techniques for the production of tissue engineering constructs.
    Mota C; Puppi D; Chiellini F; Chiellini E
    J Tissue Eng Regen Med; 2015 Mar; 9(3):174-90. PubMed ID: 23172792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.