These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. CONTRAfold: RNA secondary structure prediction without physics-based models. Do CB; Woods DA; Batzoglou S Bioinformatics; 2006 Jul; 22(14):e90-8. PubMed ID: 16873527 [TBL] [Abstract][Full Text] [Related]
4. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more. Rivas E; Lang R; Eddy SR RNA; 2012 Feb; 18(2):193-212. PubMed ID: 22194308 [TBL] [Abstract][Full Text] [Related]
5. A New Method to Predict RNA Secondary Structure Based on RNA Folding Simulation. Liu Y; Zhao Q; Zhang H; Xu R; Li Y; Wei L IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):990-995. PubMed ID: 26552091 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the effect of disturbed ensemble distributions on SCFG based statistical sampling of RNA secondary structures. Scheid A; Nebel ME BMC Bioinformatics; 2012 Jul; 13():159. PubMed ID: 22776037 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of a sophisticated SCFG design for RNA secondary structure prediction. Nebel ME; Scheid A Theory Biosci; 2011 Dec; 130(4):313-36. PubMed ID: 22135038 [TBL] [Abstract][Full Text] [Related]
8. The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective. Rivas E RNA Biol; 2013 Jul; 10(7):1185-96. PubMed ID: 23695796 [TBL] [Abstract][Full Text] [Related]
9. A sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction. Zuber J; Sun H; Zhang X; McFadyen I; Mathews DH Nucleic Acids Res; 2017 Jun; 45(10):6168-6176. PubMed ID: 28334976 [TBL] [Abstract][Full Text] [Related]
10. Secondary Structure Prediction of Single Sequences Using RNAstructure. Xu ZZ; Mathews DH Methods Mol Biol; 2016; 1490():15-34. PubMed ID: 27665590 [TBL] [Abstract][Full Text] [Related]
11. [IC-kmedoids: a clustering algorithm for RNA secondary structure prediction]. Wang C; Liu X; Wang B; Liu W Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Feb; 32(1):99-103. PubMed ID: 25997274 [TBL] [Abstract][Full Text] [Related]
12. Asymptotic distribution of motifs in a stochastic context-free grammar model of RNA folding. Poznanović S; Heitsch CE J Math Biol; 2014 Dec; 69(6-7):1743-72. PubMed ID: 24384698 [TBL] [Abstract][Full Text] [Related]
13. Identifying good predictions of RNA secondary structure. Nebel ME Pac Symp Biocomput; 2004; ():423-34. PubMed ID: 14992522 [TBL] [Abstract][Full Text] [Related]
16. Evolutionary solution for the RNA design problem. Esmaili-Taheri A; Ganjtabesh M; Mohammad-Noori M Bioinformatics; 2014 May; 30(9):1250-8. PubMed ID: 24407223 [TBL] [Abstract][Full Text] [Related]
17. A semi-supervised learning approach for RNA secondary structure prediction. Yonemoto H; Asai K; Hamada M Comput Biol Chem; 2015 Aug; 57():72-9. PubMed ID: 25748534 [TBL] [Abstract][Full Text] [Related]
18. RNA Secondary Structure Prediction Based on Energy Models. Akiyama M; Sato K Methods Mol Biol; 2023; 2586():89-105. PubMed ID: 36705900 [TBL] [Abstract][Full Text] [Related]
19. Ant colony optimization for predicting RNA folding pathways. Takitou S; Taneda A Comput Biol Chem; 2019 Dec; 83():107118. PubMed ID: 31698162 [TBL] [Abstract][Full Text] [Related]
20. RGRNA: prediction of RNA secondary structure based on replacement and growth of stems. Li J; Xu C; Liang H; Cong W; Wang Y; Luan K; Liu Y Comput Methods Biomech Biomed Engin; 2017 Sep; 20(12):1261-1272. PubMed ID: 28730879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]