These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29989224)

  • 1. Interlayers Self-Generated by Additive-Metal Interactions in Organic Electronic Devices.
    Vinokur J; Deckman I; Sarkar T; Nouzman L; Shamieh B; Frey GL
    Adv Mater; 2018 Oct; 30(41):e1706803. PubMed ID: 29989224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of Additive Migration to Form Cathodic Interlayers in Organic Solar Cells.
    Vinokur J; Obuchovsky S; Deckman I; Shoham L; Mates T; Chabinyc ML; Frey GL
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29889-29900. PubMed ID: 28800213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics.
    Liu Y; Duzhko VV; Page ZA; Emrick T; Russell TP
    Acc Chem Res; 2016 Nov; 49(11):2478-2488. PubMed ID: 27783502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Composition of Additives That Spontaneously Form Cathode Interlayers in OPVs.
    Deckman I; Obuchovsky S; Moshonov M; Frey GL
    Langmuir; 2015 Jun; 31(24):6721-8. PubMed ID: 25996286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroactive Ionenes: Efficient Interlayer Materials in Organic Photovoltaics.
    Liu Y; Russell TP
    Acc Chem Res; 2022 Apr; 55(8):1097-1108. PubMed ID: 35188380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Perylene Diimide Ink for Interlayer Formation in Air-Processed Conventional Organic Photovoltaic Devices.
    Farahat ME; Anderson MA; Martell M; Ratcliff EL; Welch GC
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43558-43567. PubMed ID: 36099398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Fullerenes and Zwitterions in Non-Conjugated Polymer Interlayers to Raise Solar Cell Efficiency.
    Liu Y; Sheri M; Cole MD; Emrick T; Russell TP
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9675-9678. PubMed ID: 29893448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transforming Ionene Polymers into Efficient Cathode Interlayers with Pendent Fullerenes.
    Liu Y; Sheri M; Cole MD; Yu DM; Emrick T; Russell TP
    Angew Chem Int Ed Engl; 2019 Apr; 58(17):5677-5681. PubMed ID: 30861272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and Morphological Control of Interfacial Self-Doping for Efficient Organic Electronics.
    Liu Y; Cole MD; Jiang Y; Kim PY; Nordlund D; Emrick T; Russell TP
    Adv Mater; 2018 Apr; 30(15):e1705976. PubMed ID: 29504157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fullerene-Based Interlayers for Breaking Energy Barriers in Organic Solar Cells.
    Gu Y; Liu Y; Russell TP
    Chempluschem; 2020 Apr; 85(4):751-759. PubMed ID: 32286736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay between Interfacial Structures and Device Performance in Organic Solar Cells: A Case Study with the Low Work Function Metal, Calcium.
    Ju H; Knesting KM; Zhang W; Pan X; Wang CH; Yang YW; Ginger DS; Zhu J
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2125-31. PubMed ID: 26716763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of interlayers in efficient organic photovoltaic devices.
    Park JH; Lee TW; Chin BD; Wang DH; Park OO
    Macromol Rapid Commun; 2010 Dec; 31(24):2095-108. PubMed ID: 21567636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Output Performance of All-Solution-Processed Organic Thermoelectrics: Spray Printing and Interface Engineering.
    Hwang S; Jeong I; Park J; Kim JK; Kim H; Lee T; Kwak J; Chung S
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26250-26257. PubMed ID: 32403922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Band-bending in organic semiconductors: the role of alkali-halide interlayers.
    Wang H; Amsalem P; Heimel G; Salzmann I; Koch N; Oehzelt M
    Adv Mater; 2014 Feb; 26(6):925-30. PubMed ID: 24338797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined transient photovoltage and impedance spectroscopy approach for a comprehensive study of interlayer degradation in non-fullerene acceptor organic solar cells.
    Pockett A; Lee HKH; Coles BL; Tsoi WC; Carnie MJ
    Nanoscale; 2019 Jun; 11(22):10872-10883. PubMed ID: 31135798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance.
    Ou KL; Ehamparam R; MacDonald G; Stubhan T; Wu X; Shallcross RC; Richards R; Brabec CJ; Saavedra SS; Armstrong NR
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19787-98. PubMed ID: 27362429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Interfacial Dipoles on the Metal-Double Interlayers-Semiconductor Structure and Their Application in Contact Resistivity Reduction.
    Kim SW; Kim SH; Kim GS; Choi C; Choi R; Yu HY
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35614-35620. PubMed ID: 27966860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Improvement of Hole and Electron Injection in Organic Field-effect Transistors by Conjugated Polymer-wrapped Carbon Nanotube Interlayers.
    Lee SH; Khim D; Xu Y; Kim J; Park WT; Kim DY; Noh YY
    Sci Rep; 2015 May; 5():10407. PubMed ID: 26001198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On practical charge injection at the metal/organic semiconductor interface.
    Kumatani A; Li Y; Darmawan P; Minari T; Tsukagoshi K
    Sci Rep; 2013; 3():1026. PubMed ID: 23293741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge injection in solution-processed organic field-effect transistors: physics, models and characterization methods.
    Natali D; Caironi M
    Adv Mater; 2012 Mar; 24(11):1357-87. PubMed ID: 22354535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.