These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
527 related articles for article (PubMed ID: 29989389)
1. Extremely Low Resistance of Li Kawasoko H; Shiraki S; Suzuki T; Shimizu R; Hitosugi T ACS Appl Mater Interfaces; 2018 Aug; 10(32):27498-27502. PubMed ID: 29989389 [TBL] [Abstract][Full Text] [Related]
2. Clean Solid-Electrolyte/Electrode Interfaces Double the Capacity of Solid-State Lithium Batteries. Kawasoko H; Shirasawa T; Nishio K; Shimizu R; Shiraki S; Hitosugi T ACS Appl Mater Interfaces; 2021 Feb; 13(4):5861-5865. PubMed ID: 33494591 [TBL] [Abstract][Full Text] [Related]
3. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
4. Relaxation of the Interface Resistance between Solid Electrolyte and 5 V-Class Positive Electrode. Nakayama R; Nishio K; Imazeki D; Nakamura N; Shimizu R; Hitosugi T Nano Lett; 2021 Jul; 21(13):5572-5577. PubMed ID: 34133187 [TBL] [Abstract][Full Text] [Related]
5. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy. Shimoyamada A; Yamamoto K; Yoshida R; Kato T; Iriyama Y; Hirayama T Microscopy (Oxf); 2015 Dec; 64(6):401-8. PubMed ID: 26337787 [TBL] [Abstract][Full Text] [Related]
6. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
7. Nanostructured Metal-Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries. Wu JF; Guo X Small; 2019 Feb; 15(5):e1804413. PubMed ID: 30624013 [TBL] [Abstract][Full Text] [Related]
8. A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety. Yi J; Zhou H ChemSusChem; 2016 Sep; 9(17):2391-6. PubMed ID: 27487523 [TBL] [Abstract][Full Text] [Related]
9. Negligible "negative space-charge layer effects" at oxide-electrolyte/electrode interfaces of thin-film batteries. Haruta M; Shiraki S; Suzuki T; Kumatani A; Ohsawa T; Takagi Y; Shimizu R; Hitosugi T Nano Lett; 2015 Mar; 15(3):1498-502. PubMed ID: 25710500 [TBL] [Abstract][Full Text] [Related]
10. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Suo L; Xue W; Gobet M; Greenbaum SG; Wang C; Chen Y; Yang W; Li Y; Li J Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1156-1161. PubMed ID: 29351993 [TBL] [Abstract][Full Text] [Related]
11. Overcoming the Interfacial Limitations Imposed by the Solid-Solid Interface in Solid-State Batteries Using Ionic Liquid-Based Interlayers. Pervez SA; Kim G; Vinayan BP; Cambaz MA; Kuenzel M; Hekmatfar M; Fichtner M; Passerini S Small; 2020 Apr; 16(14):e2000279. PubMed ID: 32105407 [TBL] [Abstract][Full Text] [Related]
12. Li3PO4-coated LiNi0.5Mn1.5O4: a stable high-voltage cathode material for lithium-ion batteries. Chong J; Xun S; Zhang J; Song X; Xie H; Battaglia V; Wang R Chemistry; 2014 Jun; 20(24):7479-85. PubMed ID: 24782138 [TBL] [Abstract][Full Text] [Related]
13. Stable Cycling Lithium-Sulfur Solid Batteries with Enhanced Li/Li Umeshbabu E; Zheng B; Zhu J; Wang H; Li Y; Yang Y ACS Appl Mater Interfaces; 2019 May; 11(20):18436-18447. PubMed ID: 31033273 [TBL] [Abstract][Full Text] [Related]
14. 3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries. Li D; Chen L; Wang T; Fan LZ ACS Appl Mater Interfaces; 2018 Feb; 10(8):7069-7078. PubMed ID: 29411972 [TBL] [Abstract][Full Text] [Related]
15. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. Walker W; Giordani V; Uddin J; Bryantsev VS; Chase GV; Addison D J Am Chem Soc; 2013 Feb; 135(6):2076-9. PubMed ID: 23360567 [TBL] [Abstract][Full Text] [Related]
16. Immense Reduction in Interfacial Resistance between Sulfide Electrolyte and Positive Electrode. Nishio K; Imazeki D; Kurushima K; Takeda Y; Edamura K; Nakayama R; Shimizu R; Hitosugi T ACS Appl Mater Interfaces; 2022 Aug; 14(30):34620-34626. PubMed ID: 35861531 [TBL] [Abstract][Full Text] [Related]
17. Focused Ion Beam Fabrication of LiPON-based Solid-state Lithium-ion Nanobatteries for In Situ Testing. Lee JZ; Wynn TA; Meng YS; Santhanagopalan D J Vis Exp; 2018 Mar; (133):. PubMed ID: 29578496 [TBL] [Abstract][Full Text] [Related]
18. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries. Ju J; Wang Y; Chen B; Ma J; Dong S; Chai J; Qu H; Cui L; Wu X; Cui G ACS Appl Mater Interfaces; 2018 Apr; 10(16):13588-13597. PubMed ID: 29620848 [TBL] [Abstract][Full Text] [Related]
19. Towards Synergistic Electrode-Electrolyte Design Principles for Nonaqueous Li-O[Formula: see text] batteries. Khetan A; Krishnamurthy D; Viswanathan V Top Curr Chem (Cham); 2018 Mar; 376(2):11. PubMed ID: 29557503 [TBL] [Abstract][Full Text] [Related]
20. In Situ Polymerized 1,3-Dioxolane Electrolyte for Integrated Solid-State Lithium Batteries. Mi YQ; Deng W; He C; Eksik O; Zheng YP; Yao K; Liu XB; Yin YH; Li YS; Xia BY; Wu ZP Angew Chem Int Ed Engl; 2023 Mar; 62(12):e202218621. PubMed ID: 36658098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]