These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29989414)

  • 1. Programming a Biofilm-Mediated Multienzyme-Assembly-Cascade System for the Biocatalytic Production of Glucosamine from Chitin.
    Bao J; Liu N; Zhu L; Xu Q; Huang H; Jiang L
    J Agric Food Chem; 2018 Aug; 66(30):8061-8068. PubMed ID: 29989414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an exo-beta-D-glucosaminidase involved in a novel chitinolytic pathway from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.
    Tanaka T; Fukui T; Atomi H; Imanaka T
    J Bacteriol; 2003 Sep; 185(17):5175-81. PubMed ID: 12923090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concerted action of diacetylchitobiose deacetylase and exo-beta-D-glucosaminidase in a novel chitinolytic pathway in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.
    Tanaka T; Fukui T; Fujiwara S; Atomi H; Imanaka T
    J Biol Chem; 2004 Jul; 279(29):30021-7. PubMed ID: 15136574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple components and induction mechanism of the chitinolytic system of the hyperthermophilic archaeon Thermococcus chitonophagus.
    Andronopoulou E; Vorgias CE
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):694-702. PubMed ID: 15322771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a novel glucosamine-6-phosphate deaminase from a hyperthermophilic archaeon.
    Tanaka T; Takahashi F; Fukui T; Fujiwara S; Atomi H; Imanaka T
    J Bacteriol; 2005 Oct; 187(20):7038-44. PubMed ID: 16199574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic Multienzyme Complexes, Catalytic Nanomachineries for Cascade Biosynthesis
    Qu J; Cao S; Wei Q; Zhang H; Wang R; Kang W; Ma T; Zhang L; Liu T; Wing-Ngor Au S; Sun F; Xia J
    ACS Nano; 2019 Sep; 13(9):9895-9906. PubMed ID: 31356751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the glucosamine kinase in the chitinolytic pathway of Thermococcus kodakarensis.
    Aslam M; Takahashi N; Matsubara K; Imanaka T; Kanai T; Atomi H
    J Biosci Bioeng; 2018 Mar; 125(3):320-326. PubMed ID: 29146530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An
    Liu Y; Huang S; Liu WQ; Ba F; Liu Y; Ling S; Li J
    ACS Synth Biol; 2024 May; 13(5):1434-1441. PubMed ID: 38695987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered catalytic biofilms: Site-specific enzyme immobilization onto E. coli curli nanofibers.
    Botyanszki Z; Tay PK; Nguyen PQ; Nussbaumer MG; Joshi NS
    Biotechnol Bioeng; 2015 Oct; 112(10):2016-24. PubMed ID: 25950512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methionine sulfoxide reductase from the hyperthermophilic archaeon Thermococcus kodakaraensis, an enzyme designed to function at suboptimal growth temperatures.
    Fukushima E; Shinka Y; Fukui T; Atomi H; Imanaka T
    J Bacteriol; 2007 Oct; 189(19):7134-44. PubMed ID: 17660280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exchange of active site residues alters substrate specificity in extremely thermostable β-glycosidase from Thermococcus kodakarensis KOD1.
    Hwa KY; Subramani B; Shen ST; Lee YM
    Enzyme Microb Technol; 2015 Sep; 77():14-20. PubMed ID: 26138395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical properties of a putative signal peptide peptidase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.
    Matsumi R; Atomi H; Imanaka T
    J Bacteriol; 2005 Oct; 187(20):7072-80. PubMed ID: 16199578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm-Mediated Immobilization of a Multienzyme Complex for Accelerating Inositol Production from Starch.
    Liu M; Han P; Zhang L; Zhong C; You C
    Bioconjug Chem; 2021 Sep; 32(9):2032-2042. PubMed ID: 34469136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Categories and biomanufacturing methods of glucosamine.
    Ma Q; Gao X
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):7883-7889. PubMed ID: 31440792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, expression, and characterization of aminopeptidase P from the hyperthermophilic archaeon Thermococcus sp. strain NA1.
    Lee HS; Kim YJ; Bae SS; Jeon JH; Lim JK; Jeong BC; Kang SG; Lee JH
    Appl Environ Microbiol; 2006 Mar; 72(3):1886-90. PubMed ID: 16517635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-Asparaginase Conjugates from the Hyperthermophilic Archaea
    Dobryakova NV; Dumina MV; Zhgun AA; Pokrovskaya MV; Aleksandrova SS; Zhdanov DD; Kudryashova EV
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocatalytic Production of Glucosamine from
    Jiang Z; Lv X; Liu Y; Shin HD; Li J; Du G; Liu L
    J Microbiol Biotechnol; 2018 Nov; 28(11):1850-1858. PubMed ID: 30086621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Chitin Based on the Colorimetric Assay of Glucosamine in Acidic Hydrolysate.
    Katano H; Takakuwa M; Hayakawa H; Kimoto H
    Anal Sci; 2016; 32(6):701-3. PubMed ID: 27302593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Pot Biosynthesis of High-Concentration α-Glucose 1-Phosphate from Starch by Sequential Addition of Three Hyperthermophilic Enzymes.
    Zhou W; You C; Ma H; Ma Y; Zhang YH
    J Agric Food Chem; 2016 Mar; 64(8):1777-83. PubMed ID: 26832825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis.
    Bashir Q; Rashid N; Jamil F; Imanaka T; Akhtar M
    J Biochem; 2009 Jul; 146(1):95-102. PubMed ID: 19307254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.