These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Uniform Incorporation of Flocculent Molybdenum Disulfide Nanostructure into Three-Dimensional Porous Graphene as an Anode for High-Performance Lithium Ion Batteries and Hybrid Supercapacitors. Zhang F; Tang Y; Liu H; Ji H; Jiang C; Zhang J; Zhang X; Lee CS ACS Appl Mater Interfaces; 2016 Feb; 8(7):4691-9. PubMed ID: 26808826 [TBL] [Abstract][Full Text] [Related]
43. A cooperative biphasic MoO Lee SM; Kim J; Moon J; Jung KN; Kim JH; Park GJ; Choi JH; Rhee DY; Kim JS; Lee JW; Park MS Nat Commun; 2021 Jan; 12(1):39. PubMed ID: 33397916 [TBL] [Abstract][Full Text] [Related]
44. Na-Ion Battery Anodes: Materials and Electrochemistry. Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764 [TBL] [Abstract][Full Text] [Related]
45. An Ultrafast, Durable, and High-Loading Polymer Anode for Aqueous Zinc-Ion Batteries and Supercapacitors. Xu Z; Li M; Sun W; Tang T; Lu J; Wang X Adv Mater; 2022 Jun; 34(23):e2200077. PubMed ID: 35355338 [TBL] [Abstract][Full Text] [Related]
46. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities. Mo R; Tan X; Li F; Tao R; Xu J; Kong D; Wang Z; Xu B; Wang X; Wang C; Li J; Peng Y; Lu Y Nat Commun; 2020 Mar; 11(1):1374. PubMed ID: 32170134 [TBL] [Abstract][Full Text] [Related]
47. A Nonaqueous Potassium-Based Battery-Supercapacitor Hybrid Device. Fan L; Lin K; Wang J; Ma R; Lu B Adv Mater; 2018 May; 30(20):e1800804. PubMed ID: 29603424 [TBL] [Abstract][Full Text] [Related]
48. Defect-Free Prussian Blue Analogue as Zero-Strain Cathode Material for High-Energy-Density Potassium-Ion Batteries. Zhou Q; Liu HK; Dou SX; Chong S ACS Nano; 2024 Mar; 18(9):7287-7297. PubMed ID: 38373205 [TBL] [Abstract][Full Text] [Related]
49. Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries. Kim DM; Kim Y; Arumugam D; Woo SW; Jo YN; Park MS; Kim YJ; Choi NS; Lee KT ACS Appl Mater Interfaces; 2016 Apr; 8(13):8554-60. PubMed ID: 26967192 [TBL] [Abstract][Full Text] [Related]
50. Solvent-Mediated, Reversible Ternary Graphite Intercalation Compounds for Extreme-Condition Li-Ion Batteries. Tao L; Xia D; Sittisomwong P; Zhang H; Lai J; Hwang S; Li T; Ma B; Hu A; Min J; Hou D; Shah SR; Zhao K; Yang G; Zhou H; Li L; Bai P; Shi F; Lin F J Am Chem Soc; 2024 Jun; 146(24):16764-74. PubMed ID: 38847794 [TBL] [Abstract][Full Text] [Related]
51. Evolution of strategies for modern rechargeable batteries. Goodenough JB Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097 [TBL] [Abstract][Full Text] [Related]
52. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes. Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718 [TBL] [Abstract][Full Text] [Related]
53. Quasi-Solid-State Sodium-Ion Full Battery with High-Power/Energy Densities. Guo JZ; Yang AB; Gu ZY; Wu XL; Pang WL; Ning QL; Li WH; Zhang JP; Su ZM ACS Appl Mater Interfaces; 2018 May; 10(21):17903-17910. PubMed ID: 29717864 [TBL] [Abstract][Full Text] [Related]
54. Solvated Ion Intercalation in Graphite: Sodium and Beyond. Park J; Xu ZL; Kang K Front Chem; 2020; 8():432. PubMed ID: 32509735 [TBL] [Abstract][Full Text] [Related]
55. An Open-Framework Structured Material: [Ni(en) Zhang D; Sun L; Wang C; Xue Q; Feng J; Ran W; Yan T ACS Appl Mater Interfaces; 2022 Apr; 14(14):16197-16203. PubMed ID: 35362955 [TBL] [Abstract][Full Text] [Related]
56. High power Na Sadan MK; Haridas AK; Kim H; Kim C; Cho GB; Cho KK; Ahn JH; Ahn HJ Nanoscale Adv; 2020 Nov; 2(11):5166-5170. PubMed ID: 36132030 [TBL] [Abstract][Full Text] [Related]
57. An Ultrafast and Highly Stable Potassium-Organic Battery. Fan L; Ma R; Wang J; Yang H; Lu B Adv Mater; 2018 Dec; 30(51):e1805486. PubMed ID: 30365197 [TBL] [Abstract][Full Text] [Related]
58. Size-, Water-, and Defect-Regulated Potassium Manganese Hexacyanoferrate with Superior Cycling Stability and Rate Capability for Low-Cost Sodium-Ion Batteries. Zhou A; Xu Z; Gao H; Xue L; Li J; Goodenough JB Small; 2019 Oct; 15(42):e1902420. PubMed ID: 31469502 [TBL] [Abstract][Full Text] [Related]
59. Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. Krauskopf T; Richter FH; Zeier WG; Janek J Chem Rev; 2020 Aug; 120(15):7745-7794. PubMed ID: 32786669 [TBL] [Abstract][Full Text] [Related]