BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 29989796)

  • 1. DIA-SIFT: A Precursor and Product Ion Filter for Accurate Stable Isotope Data-Independent Acquisition Proteomics.
    Haynes SE; Majmudar JD; Martin BR
    Anal Chem; 2018 Aug; 90(15):8722-8726. PubMed ID: 29989796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Software for quantitative proteomic analysis using stable isotope labeling and data independent acquisition.
    Huang X; Liu M; Nold MJ; Tian C; Fu K; Zheng J; Geromanos SJ; Ding SJ
    Anal Chem; 2011 Sep; 83(18):6971-9. PubMed ID: 21834580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BoxCarmax: A High-Selectivity Data-Independent Acquisition Mass Spectrometry Method for the Analysis of Protein Turnover and Complex Samples.
    Salovska B; Li W; Di Y; Liu Y
    Anal Chem; 2021 Feb; 93(6):3103-3111. PubMed ID: 33533601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using SILAC to Develop Quantitative Data-Independent Acquisition (DIA) Proteomic Methods.
    Casavant EP; Liang J; Sankhe S; Mathews WR; Anania VG
    Methods Mol Biol; 2023; 2603():245-257. PubMed ID: 36370285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics.
    Distler U; Kuharev J; Navarro P; Tenzer S
    Nat Protoc; 2016 Apr; 11(4):795-812. PubMed ID: 27010757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic Profiling of Cell Death: Stable Isotope Labeling and Mass Spectrometry Analysis.
    Webb AI
    Methods Mol Biol; 2016; 1419():277-86. PubMed ID: 27108446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed quantification for data-independent acquisition.
    Minogue CE; Hebert AS; Rensvold JW; Westphall MS; Pagliarini DJ; Coon JJ
    Anal Chem; 2015 Mar; 87(5):2570-5. PubMed ID: 25621425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coisolation of Peptide Pairs for Peptide Identification and MS/MS-Based Quantification.
    Smith IR; Eng JK; Barente AS; Hogrebe A; Llovet A; Rodriguez-Mias RA; Villén J
    Anal Chem; 2022 Nov; 94(44):15198-15206. PubMed ID: 36306373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MdFDIA: A Mass Defect Based Four-Plex Data-Independent Acquisition Strategy for Proteome Quantification.
    Di Y; Zhang Y; Zhang L; Tao T; Lu H
    Anal Chem; 2017 Oct; 89(19):10248-10255. PubMed ID: 28872844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved SILAC Quantification with Data-Independent Acquisition to Investigate Bortezomib-Induced Protein Degradation.
    Pino LK; Baeza J; Lauman R; Schilling B; Garcia BA
    J Proteome Res; 2021 Apr; 20(4):1918-1927. PubMed ID: 33764077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MS1 Peptide Ion Intensity Chromatograms in MS2 (SWATH) Data Independent Acquisitions. Improving Post Acquisition Analysis of Proteomic Experiments.
    Rardin MJ; Schilling B; Cheng LY; MacLean BX; Sorensen DJ; Sahu AK; MacCoss MJ; Vitek O; Gibson BW
    Mol Cell Proteomics; 2015 Sep; 14(9):2405-19. PubMed ID: 25987414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative proteomics using stable isotope labeling with amino acids in cell culture.
    Harsha HC; Molina H; Pandey A
    Nat Protoc; 2008; 3(3):505-16. PubMed ID: 18323819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry.
    Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K
    J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Precursor and Fragment Information for Improved Detection of Differential Abundance in Data Independent Acquisition.
    Huang T; Bruderer R; Muntel J; Xuan Y; Vitek O; Reiter L
    Mol Cell Proteomics; 2020 Feb; 19(2):421-430. PubMed ID: 31888964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics.
    Hoedt E; Zhang G; Neubert TA
    Adv Exp Med Biol; 2019; 1140():531-539. PubMed ID: 31347069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing Suitability of Cell Cultures for SILAC-Experiments Using SWATH-Mass Spectrometry.
    Reinders Y; Völler D; Bosserhoff AK; Oefner PJ; Reinders J
    Methods Mol Biol; 2016; 1394():101-108. PubMed ID: 26700044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing protein discoverability by data independent acquisition assisted by ion mobility mass spectrometry.
    Nys G; Nix C; Cobraiville G; Servais AC; Fillet M
    Talanta; 2020 Jun; 213():120812. PubMed ID: 32200919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics.
    Hoedt E; Zhang G; Neubert TA
    Adv Exp Med Biol; 2014; 806():93-106. PubMed ID: 24952180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective correction of experimental errors in quantitative proteomics using stable isotope labeling by amino acids in cell culture (SILAC).
    Park SS; Wu WW; Zhou Y; Shen RF; Martin B; Maudsley S
    J Proteomics; 2012 Jun; 75(12):3720-32. PubMed ID: 22575385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removing the Hidden Data Dependency of DIA with Predicted Spectral Libraries.
    Van Puyvelde B; Willems S; Gabriels R; Daled S; De Clerck L; Vande Casteele S; Staes A; Impens F; Deforce D; Martens L; Degroeve S; Dhaenens M
    Proteomics; 2020 Feb; 20(3-4):e1900306. PubMed ID: 31981311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.