These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 29989847)
1. Evidence for Sexual Recombination in Didymella tanaceti Populations, and Their Evolution Over Spring Production in Australian Pyrethrum Fields. Pearce TL; Scott JB; Pilkington SJ; Pethybridge SJ; Hay FS Phytopathology; 2019 Jan; 109(1):155-168. PubMed ID: 29989847 [TBL] [Abstract][Full Text] [Related]
2. Mating-Type Gene Structure and Spatial Distribution of Didymella tanaceti in Pyrethrum Fields. Pearce TL; Scott JB; Hay FS; Pethybridge SJ Phytopathology; 2016 Dec; 106(12):1521-1529. PubMed ID: 27398744 [TBL] [Abstract][Full Text] [Related]
3. Mycoflora Associated With Pyrethrum Seed and the Integration of Seed Steam Treatment Into Foliar Disease Management Strategies. Scott JB; Gent DH; Pearce TL; Pethybridge SJ; Pilkington SJ; Hay FS Plant Dis; 2017 Nov; 101(11):1874-1884. PubMed ID: 30677321 [TBL] [Abstract][Full Text] [Related]
4. Population Structure of Lelwala RV; Scott JB; Ades PK; Taylor PWJ Phytopathology; 2019 Oct; 109(10):1779-1792. PubMed ID: 31179858 [No Abstract] [Full Text] [Related]
5. Identification of the MAT1 locus in Stagonosporopsis tanaceti, and exploring its potential for sexual reproduction in Australian pyrethrum fields. Vaghefi N; Ades PK; Hay FS; Pethybridge SJ; Ford R; Taylor PW Fungal Biol; 2015 May; 119(5):408-19. PubMed ID: 25937067 [TBL] [Abstract][Full Text] [Related]
6. Changes in Distribution and Frequency of Fungi Associated With a Foliar Disease Complex of Pyrethrum in Australia. Hay FS; Gent DH; Pilkington SJ; Pearce TL; Scott JB; Pethybridge SJ Plant Dis; 2015 Sep; 99(9):1227-1235. PubMed ID: 30695926 [TBL] [Abstract][Full Text] [Related]
7. Rapid Changes in the Genetic Composition of Stagonosporopsis tanaceti Population in Australian Pyrethrum Fields. Vaghefi N; Hay FS; Ades PK; Pethybridge SJ; Ford R; Taylor PW Phytopathology; 2015 Mar; 105(3):358-69. PubMed ID: 25226524 [TBL] [Abstract][Full Text] [Related]
8. Evolution of the Genetic Structure of the Pearce TL; Scott JB; Wilson CR; Gent DH Phytopathology; 2023 Oct; 113(10):1946-1958. PubMed ID: 37129263 [TBL] [Abstract][Full Text] [Related]
9. Fine-Scale Population Genetic Structure and Within-Tree Distribution of Mating Types of Venturia effusa, Cause of Pecan Scab in the United States. Bock CH; Young CA; Stevenson KL; Charlton ND Phytopathology; 2018 Nov; 108(11):1326-1336. PubMed ID: 29771192 [TBL] [Abstract][Full Text] [Related]
10. Multiple mutations across the succinate dehydrogenase gene complex are associated with boscalid resistance in Didymella tanaceti in pyrethrum. Pearce TL; Wilson CR; Gent DH; Scott JB PLoS One; 2019; 14(6):e0218569. PubMed ID: 31220147 [TBL] [Abstract][Full Text] [Related]
11. Characterization of mating type genes supports the hypothesis that Stagonosporopsis chrysanthemi is homothallic and provides evidence that Stagonosporopsis tanaceti is heterothallic. Chilvers MI; Jones S; Meleca J; Peever TL; Pethybridge SJ; Hay FS Curr Genet; 2014 Nov; 60(4):295-302. PubMed ID: 24974310 [TBL] [Abstract][Full Text] [Related]
12. Genetic differentiation at microsatellite loci among populations of Mycosphaerella graminicola from California, Indiana, Kansas, and North Dakota. Gurung S; Goodwin SB; Kabbage M; Bockus WW; Adhikari TB Phytopathology; 2011 Oct; 101(10):1251-9. PubMed ID: 21692645 [TBL] [Abstract][Full Text] [Related]
13. Comparative genome analysis indicates high evolutionary potential of pathogenicity genes in Colletotrichum tanaceti. Lelwala RV; Korhonen PK; Young ND; Scott JB; Ades PK; Gasser RB; Taylor PWJ PLoS One; 2019; 14(5):e0212248. PubMed ID: 31150449 [TBL] [Abstract][Full Text] [Related]
14. Epidemics of ray blight on pyrethrum are linked to seed contamination and overwintering inoculum of Phoma ligulicola var. inoxydabilis. Pethybridge SJ; Gent DH; Hay FS Phytopathology; 2011 Sep; 101(9):1112-21. PubMed ID: 21501088 [TBL] [Abstract][Full Text] [Related]
15. High Genetic Diversity in Predominantly Clonal Populations of the Powdery Mildew Fungus Gañán-Betancur L; Peever TL; Evans K; Amiri A Appl Environ Microbiol; 2021 Jul; 87(15):e0046921. PubMed ID: 34020938 [TBL] [Abstract][Full Text] [Related]
16. Genetic structure of Phaeosphaeria nodorum populations in the north-central and midwestern United States. Adhikari TB; Ali S; Burlakoti RR; Singh PK; Mergoum M; Goodwin SB Phytopathology; 2008 Jan; 98(1):101-7. PubMed ID: 18943244 [TBL] [Abstract][Full Text] [Related]
17. Microsatellite markers reveal genetic differentiation among populations of Sclerotinia sclerotiorum from Australian canola fields. Sexton AC; Howlett BJ Curr Genet; 2004 Dec; 46(6):357-65. PubMed ID: 15549318 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the potential for sexual reproduction in field populations of Cercospora beticola from USA. Bolton MD; Secor GA; Rivera V; Weiland JJ; Rudolph K; Birla K; Rengifo J; Campbell LG Fungal Biol; 2012 Apr; 116(4):511-21. PubMed ID: 22483049 [TBL] [Abstract][Full Text] [Related]
19. Aggressiveness Changes in Populations of Didymella pinodes over Winter and Spring Pea Cropping Seasons. Laloi G; Montarry J; Guibert M; Andrivon D; Michot D; Le May C Appl Environ Microbiol; 2016 Jul; 82(14):4330-4339. PubMed ID: 27208102 [TBL] [Abstract][Full Text] [Related]
20. Temporal Genetic Differentiation of Cercospora beticola Populations in New York Table Beet Fields. Knight NL; Vaghefi N; Hansen ZR; Kikkert JR; Pethybridge SJ Plant Dis; 2018 Nov; 102(11):2074-2082. PubMed ID: 30156961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]