BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29990003)

  • 1. Switched Latent Force Models for Reverse-Engineering Transcriptional Regulation in Gene Expression Data.
    Lopez-Lopera AF; Alvarez MA
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):322-335. PubMed ID: 29990003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing regulatory path motifs in integrated networks using perturbational data.
    Joshi A; Van Parys T; Van de Peer Y; Michoel T
    Genome Biol; 2010; 11(3):R32. PubMed ID: 20230615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
    Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical Programming for Modeling Expression of a Gene Using Gurobi Optimizer to Identify Its Transcriptional Regulators.
    Muley VY
    Methods Mol Biol; 2021; 2328():99-113. PubMed ID: 34251621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional network inference from functional similarity and expression data: a global supervised approach.
    Ambroise J; Robert A; Macq B; Gala JL
    Stat Appl Genet Mol Biol; 2012 Jan; 11(1):Article 2. PubMed ID: 22499684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous inference and clustering of transcriptional dynamics in gene regulatory networks.
    Asif HM; Sanguinetti G
    Stat Appl Genet Mol Biol; 2013 Oct; 12(5):545-57. PubMed ID: 24051920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching regulatory models of cellular stress response.
    Sanguinetti G; Ruttor A; Opper M; Archambeau C
    Bioinformatics; 2009 May; 25(10):1280-6. PubMed ID: 19279066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CoVar: A generalizable machine learning approach to identify the coordinated regulators driving variational gene expression.
    Roy S; Sheikh SZ; Furey TS
    PLoS Comput Biol; 2024 Apr; 20(4):e1012016. PubMed ID: 38630807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring the regulatory interaction models of transcription factors in transcriptional regulatory networks.
    Awad S; Panchy N; Ng SK; Chen J
    J Bioinform Comput Biol; 2012 Oct; 10(5):1250012. PubMed ID: 22849367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TGMI: an efficient algorithm for identifying pathway regulators through evaluation of triple-gene mutual interaction.
    Gunasekara C; Zhang K; Deng W; Brown L; Wei H
    Nucleic Acids Res; 2018 Jun; 46(11):e67. PubMed ID: 29579312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpreting patterns of gene expression: signatures of coregulation, the data processing inequality, and triplet motifs.
    Ku WL; Duggal G; Li Y; Girvan M; Ott E
    PLoS One; 2012; 7(2):e31969. PubMed ID: 22393375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulatory network refinement and quantification through kinetic modeling, gene expression microarray data and information theory.
    Sayyed-Ahmad A; Tuncay K; Ortoleva PJ
    BMC Bioinformatics; 2007 Jan; 8():20. PubMed ID: 17244365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generating realistic in silico gene networks for performance assessment of reverse engineering methods.
    Marbach D; Schaffter T; Mattiussi C; Floreano D
    J Comput Biol; 2009 Feb; 16(2):229-39. PubMed ID: 19183003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inference of gene regulatory networks incorporating multi-source biological knowledge via a state space model with L1 regularization.
    Hasegawa T; Yamaguchi R; Nagasaki M; Miyano S; Imoto S
    PLoS One; 2014; 9(8):e105942. PubMed ID: 25162401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systems biology approach identifies key regulators and the interplay between miRNAs and transcription factors for pathological cardiac hypertrophy.
    Recamonde-Mendoza M; Werhli AV; Biolo A
    Gene; 2019 May; 698():157-169. PubMed ID: 30844478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling transcriptional regulatory programs by integrative analysis of microarray and transcription factor binding data.
    Li H; Zhan M
    Bioinformatics; 2008 Sep; 24(17):1874-80. PubMed ID: 18586698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale learning of combinatorial transcriptional dynamics from gene expression.
    Asif HM; Sanguinetti G
    Bioinformatics; 2011 May; 27(9):1277-83. PubMed ID: 21367870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.
    Kentzoglanakis K; Poole M
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):358-71. PubMed ID: 21576756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis of gene transcription regulation in prokaryotes.
    Zhou D; Yang R
    Cell Mol Life Sci; 2006 Oct; 63(19-20):2260-90. PubMed ID: 16927028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.