These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29990107)

  • 1. Human Pathway-Based Disease Network.
    Yu L; Gao L
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1240-1249. PubMed ID: 29990107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Novel Drugs for Hepatocellular Carcinoma Based on Multi-Source Random Walk.
    Yu L; Su R; Wang B; Zhang L; Zou Y; Zhang J; Gao L
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):966-977. PubMed ID: 27076463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Potential Drugs for Breast Cancer based on miRNA and Tissue Specificity.
    Yu L; Zhao J; Gao L
    Int J Biol Sci; 2018; 14(8):971-982. PubMed ID: 29989066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Novel Drugs and Diseases for Hepatocellular Carcinoma Based on Multi-Source Simulated Annealing Based Random Walk.
    Ibrahim SJA; Thangamani M
    J Med Syst; 2018 Sep; 42(10):188. PubMed ID: 30173379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association.
    Cheng L; Li J; Ju P; Peng J; Wang Y
    PLoS One; 2014; 9(6):e99415. PubMed ID: 24932637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating Gene Ontology-Disease Inferences to Explore Mechanisms of Human Disease at the Comparative Toxicogenomics Database.
    Davis AP; Wiegers TC; King BL; Wiegers J; Grondin CJ; Sciaky D; Johnson RJ; Mattingly CJ
    PLoS One; 2016; 11(5):e0155530. PubMed ID: 27171405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COMPUTING THERAPY FOR PRECISION MEDICINE: COLLABORATIVE FILTERING INTEGRATES AND PREDICTS MULTI-ENTITY INTERACTIONS.
    Regenbogen S; Wilkins AD; Lichtarge O
    Pac Symp Biocomput; 2016; 21():21-32. PubMed ID: 26776170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational drug repositioning through heterogeneous network clustering.
    Wu C; Gudivada RC; Aronow BJ; Jegga AG
    BMC Syst Biol; 2013; 7 Suppl 5(Suppl 5):S6. PubMed ID: 24564976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-based inference methods for drug repositioning.
    Chen H; Zhang H; Zhang Z; Cao Y; Tang W
    Comput Math Methods Med; 2015; 2015():130620. PubMed ID: 25969690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network-Based Drug Repositioning: Approaches, Resources, and Research Directions.
    Alaimo S; Pulvirenti A
    Methods Mol Biol; 2019; 1903():97-113. PubMed ID: 30547438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MNBDR: A Module Network Based Method for Drug Repositioning.
    Chen HG; Zhou XH
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33375395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks.
    Liu H; Song Y; Guan J; Luo L; Zhuang Z
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):539. PubMed ID: 28155639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug Repurposing for Alzheimer's Disease Based on Protein-Protein Interaction Network.
    Soleimani Zakeri NS; Pashazadeh S; MotieGhader H
    Biomed Res Int; 2021; 2021():1280237. PubMed ID: 34692825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathway-based Bayesian inference of drug-disease interactions.
    Pratanwanich N; Lió P
    Mol Biosyst; 2014 Jun; 10(6):1538-48. PubMed ID: 24695945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational drug repositioning using low-rank matrix approximation and randomized algorithms.
    Luo H; Li M; Wang S; Liu Q; Li Y; Wang J
    Bioinformatics; 2018 Jun; 34(11):1904-1912. PubMed ID: 29365057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network controllability solutions for computational drug repurposing using genetic algorithms.
    Popescu VB; Kanhaiya K; Năstac DI; Czeizler E; Petre I
    Sci Rep; 2022 Jan; 12(1):1437. PubMed ID: 35082323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug repositioning using drug-disease vectors based on an integrated network.
    Lee T; Yoon Y
    BMC Bioinformatics; 2018 Nov; 19(1):446. PubMed ID: 30463505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ksRepo: a generalized platform for computational drug repositioning.
    Brown AS; Kong SW; Kohane IS; Patel CJ
    BMC Bioinformatics; 2016 Feb; 17():78. PubMed ID: 26860211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway networks generated from human disease phenome.
    Cirincione AG; Clark KL; Kann MG
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):75. PubMed ID: 30255817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A miRNA-driven inference model to construct potential drug-disease associations for drug repositioning.
    Chen H; Zhang Z
    Biomed Res Int; 2015; 2015():406463. PubMed ID: 25789319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.