These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29990125)

  • 1. RF-NR: Random Forest Based Approach for Improved Classification of Nuclear Receptors.
    Ismail HD; Saigo H; Kc DB
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1844-1852. PubMed ID: 29990125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NR-2L: a two-level predictor for identifying nuclear receptor subfamilies based on sequence-derived features.
    Wang P; Xiao X; Chou KC
    PLoS One; 2011; 6(8):e23505. PubMed ID: 21858146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate prediction of nuclear receptors with conjoint triad feature.
    Wang H; Hu X
    BMC Bioinformatics; 2015 Dec; 16():402. PubMed ID: 26630876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the classification of nuclear receptors with feature selection.
    Gao QB; Jin ZC; Ye XF; Wu C; Lu J; He J
    Protein Pept Lett; 2009; 16(7):823-9. PubMed ID: 19601913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of nuclear receptors with optimal pseudo amino acid composition.
    Gao QB; Jin ZC; Ye XF; Wu C; He J
    Anal Biochem; 2009 Apr; 387(1):54-9. PubMed ID: 19454254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classifying G protein-coupled receptors and nuclear receptors on the basis of protein power spectrum from fast Fourier transform.
    Guo YZ; Li M; Lu M; Wen Z; Wang K; Li G; Wu J
    Amino Acids; 2006 Jun; 30(4):397-402. PubMed ID: 16773242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of nuclear receptors based on amino acid composition and dipeptide composition.
    Bhasin M; Raghava GP
    J Biol Chem; 2004 May; 279(22):23262-6. PubMed ID: 15039428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progresses in identifying nuclear receptors and their families.
    Xiao X; Wang P; Chou KC
    Curr Top Med Chem; 2013; 13(10):1192-200. PubMed ID: 23647541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NRPreTo: A Machine Learning-Based Nuclear Receptor and Subfamily Prediction Tool.
    Madugula SS; Pandey S; Amalapurapu S; Bozdag S
    ACS Omega; 2023 Jun; 8(23):20379-20388. PubMed ID: 37323377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Machine Learning Methods in Predicting Nuclear Receptors and their Families.
    Zhang ZM; Guan ZX; Wang F; Zhang D; Ding H
    Med Chem; 2020; 16(5):594-604. PubMed ID: 31584374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using random forest to classify linear B-cell epitopes based on amino acid properties and molecular features.
    Huang JH; Wen M; Tang LJ; Xie HL; Fu L; Liang YZ; Lu HM
    Biochimie; 2014 Aug; 103():1-6. PubMed ID: 24721579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational characterization of parallel dimeric and trimeric coiled-coils using effective amino acid indices.
    Li C; Wang XF; Chen Z; Zhang Z; Song J
    Mol Biosyst; 2015 Feb; 11(2):354-60. PubMed ID: 25435395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iNR-2L: A two-level sequence-based predictor developed via Chou's 5-steps rule and general PseAAC for identifying nuclear receptors and their families.
    Kabir M; Ahmad S; Iqbal M; Hayat M
    Genomics; 2020 Jan; 112(1):276-285. PubMed ID: 30779939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. isGPT: An optimized model to identify sub-Golgi protein types using SVM and Random Forest based feature selection.
    Rahman MS; Rahman MK; Kaykobad M; Rahman MS
    Artif Intell Med; 2018 Jan; 84():90-100. PubMed ID: 29183738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine.
    Deng L; Pan J; Xu X; Yang W; Liu C; Liu H
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):522. PubMed ID: 30598073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling of 3696 Nuclear Receptor-Coregulator Interactions: A Resource for Biological and Clinical Discovery.
    Broekema MF; Hollman DAA; Koppen A; van den Ham HJ; Melchers D; Pijnenburg D; Ruijtenbeek R; van Mil SWC; Houtman R; Kalkhoven E
    Endocrinology; 2018 Jun; 159(6):2397-2407. PubMed ID: 29718163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure.
    Shi H; Liu S; Chen J; Li X; Ma Q; Yu B
    Genomics; 2019 Dec; 111(6):1839-1852. PubMed ID: 30550813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational approach for prediction of donor splice sites with improved accuracy.
    Meher PK; Sahu TK; Rao AR; Wahi SD
    J Theor Biol; 2016 Sep; 404():285-294. PubMed ID: 27302911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iNR-PhysChem: a sequence-based predictor for identifying nuclear receptors and their subfamilies via physical-chemical property matrix.
    Xiao X; Wang P; Chou KC
    PLoS One; 2012; 7(2):e30869. PubMed ID: 22363503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.