BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29990217)

  • 1. A Mixed-Norm Laplacian Regularized Low-Rank Representation Method for Tumor Samples Clustering.
    Wang J; Liu JX; Zheng CH; Wang YX; Kong XZ; Wen CG
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):172-182. PubMed ID: 29990217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laplacian regularized low-rank representation for cancer samples clustering.
    Wang J; Liu JX; Kong XZ; Yuan SS; Dai LY
    Comput Biol Chem; 2019 Feb; 78():504-509. PubMed ID: 30528509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-cancer samples clustering via graph regularized low-rank representation method under sparse and symmetric constraints.
    Wang J; Lu CH; Liu JX; Dai LY; Kong XZ
    BMC Bioinformatics; 2019 Dec; 20(Suppl 22):718. PubMed ID: 31888442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Low-Rank Representation Method Regularized by Dual-Hypergraph Laplacian for Selecting Differentially Expressed Genes.
    Xu XX; Dai LY; Kong XZ; Liu JX
    Hum Hered; 2019; 84(1):21-33. PubMed ID: 31466058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust and Efficient Biomolecular Clustering of Tumor Based on ${p}$ -Norm Singular Value Decomposition.
    Kong XZ; Liu JX; Zheng CH; Hou MX; Wang J
    IEEE Trans Nanobioscience; 2017 Jul; 16(5):341-348. PubMed ID: 28541216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low Rank Subspace Clustering via Discrete Constraint and Hypergraph Regularization for Tumor Molecular Pattern Discovery.
    Liu J; Cheng Y; Wang X; Cui X; Kong Y; Du J
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1500-1512. PubMed ID: 29993749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentially expressed genes selection via Laplacian regularized low-rank representation method.
    Wang YX; Liu JX; Gao YL; Zheng CH; Shang JL
    Comput Biol Chem; 2016 Dec; 65():185-192. PubMed ID: 27693191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PCA Based on Graph Laplacian Regularization and P-Norm for Gene Selection and Clustering.
    Feng CM; Gao YL; Liu JX; Zheng CH; Yu J
    IEEE Trans Nanobioscience; 2017 Jun; 16(4):257-265. PubMed ID: 28371780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A truncated nuclear norm and graph-Laplacian regularized low-rank representation method for tumor clustering and gene selection.
    Liu Q
    BMC Bioinformatics; 2022 Jan; 22(Suppl 12):436. PubMed ID: 35057728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Principal Component Analysis Regularized by Truncated Nuclear Norm for Identifying Differentially Expressed Genes.
    Wang YX; Gao YL; Liu JX; Kong XZ; Li HJ
    IEEE Trans Nanobioscience; 2017 Sep; 16(6):447-454. PubMed ID: 28692983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-view manifold regularized compact low-rank representation for cancer samples clustering on multi-omics data.
    Wang J; Lu CH; Kong XZ; Dai LY; Yuan S; Zhang X
    BMC Bioinformatics; 2022 Jan; 22(Suppl 12):334. PubMed ID: 35057729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust hypergraph regularized non-negative matrix factorization for sample clustering and feature selection in multi-view gene expression data.
    Yu N; Gao YL; Liu JX; Wang J; Shang J
    Hum Genomics; 2019 Oct; 13(Suppl 1):46. PubMed ID: 31639067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid fuzzy cluster ensemble framework for tumor clustering from biomolecular data.
    Yu Z; Chen H; You J; Han G; Li L
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):657-70. PubMed ID: 24091399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCA via joint graph Laplacian and sparse constraint: Identification of differentially expressed genes and sample clustering on gene expression data.
    Feng CM; Xu Y; Hou MX; Dai LY; Shang JL
    BMC Bioinformatics; 2019 Dec; 20(Suppl 22):716. PubMed ID: 31888433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparse p-norm Nonnegative Matrix Factorization for clustering gene expression data.
    Liu W; Yuan K
    Int J Data Min Bioinform; 2008; 2(3):236-49. PubMed ID: 19024496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyper-Laplacian regularized multi-view subspace clustering with low-rank tensor constraint.
    Lu GF; Yu QR; Wang Y; Tang G
    Neural Netw; 2020 May; 125():214-223. PubMed ID: 32146353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hessian regularization based non-negative matrix factorization for gene expression data clustering.
    Liu X; Shi J; Wang C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4130-3. PubMed ID: 26737203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Negative Symmetric Low-Rank Representation Graph Regularized Method for Cancer Clustering Based on Score Function.
    Lu C; Wang J; Liu J; Zheng C; Kong X; Zhang X
    Front Genet; 2019; 10():1353. PubMed ID: 32038712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hessian regularization based symmetric nonnegative matrix factorization for clustering gene expression and microbiome data.
    Ma Y; Hu X; He T; Jiang X
    Methods; 2016 Dec; 111():80-84. PubMed ID: 27339941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correntropy-Based Hypergraph Regularized NMF for Clustering and Feature Selection on Multi-Cancer Integrated Data.
    Yu N; Wu MJ; Liu JX; Zheng CH; Xu Y
    IEEE Trans Cybern; 2021 Aug; 51(8):3952-3963. PubMed ID: 32603306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.