These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29990244)

  • 1. Feature Extraction of Galvanic Skin Responses by Nonnegative Sparse Deconvolution.
    Hernando-Gallego F; Luengo D; Artes-Rodriguez A
    IEEE J Biomed Health Inform; 2018 Sep; 22(5):1385-1394. PubMed ID: 29990244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cvxEDA: A Convex Optimization Approach to Electrodermal Activity Processing.
    Greco A; Valenza G; Lanata A; Scilingo EP; Citi L
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):797-804. PubMed ID: 26336110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Compressed Sensing Based Decomposition of Electrodermal Activity Signals.
    Jain S; Oswal U; Xu KS; Eriksson B; Haupt J
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2142-2151. PubMed ID: 27893381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment.
    Posada-Quintero HF; Florian JP; Orjuela-Cañón AD; Aljama-Corrales T; Charleston-Villalobos S; Chon KH
    Ann Biomed Eng; 2016 Oct; 44(10):3124-3135. PubMed ID: 27059225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse Deconvolution of Electrodermal Activity via Continuous-Time System Identification.
    Amin MR; Faghih RT
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2585-2595. PubMed ID: 30629490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparse representation of electrodermal activity with knowledge-driven dictionaries.
    Chaspari T; Tsiartas A; Stein LI; Cermak SA; Narayanan SS
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):960-71. PubMed ID: 25494494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity.
    Poh MZ; Swenson NC; Picard RW
    IEEE Trans Biomed Eng; 2010 May; 57(5):1243-52. PubMed ID: 20172811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of Spectral Indices of Electrodermal Activity with a Wearable Device.
    McNaboe RQ; Hossain MB; Kong Y; Chon KH; Posada-Quintero HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6991-6994. PubMed ID: 34892712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Implementation of an Ultra-Low Resource Electrodermal Activity Sensor for Wearable Applications
    Pope GC; Halter RJ
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31146358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrodermal activity processing: a convex optimization approach.
    Greco A; Lanata A; Valenza G; Scilingo EP; Citi L
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2290-3. PubMed ID: 25570445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodermal response propagation time as a potential psychophysiological marker.
    Silva H; Fred A; Lourenco A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6756-9. PubMed ID: 23367480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a magnetic resonance-compatible galvanic skin response measurement system using optic signal.
    Lim DW; Park JR; Choi MH; Lee SJ; Choi JS; Kim HS; Yi JH; Tack GR; Lee B; Chung SC
    Int J Neurosci; 2009; 119(9):1337-45. PubMed ID: 19922360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrodermal responses: what happens in the brain.
    Critchley HD
    Neuroscientist; 2002 Apr; 8(2):132-42. PubMed ID: 11954558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic identification of artifacts in electrodermal activity data.
    Taylor S; Jaques N; Chen W; Fedor S; Sano A; Picard R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1934-7. PubMed ID: 26736662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A continuous measure of phasic electrodermal activity.
    Benedek M; Kaernbach C
    J Neurosci Methods; 2010 Jun; 190(1):80-91. PubMed ID: 20451556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Driver Distraction Identification On-The-Road via Continuous Decomposition of Galvanic Skin Responses.
    Dehzangi O; Rajendra V; Taherisadr M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29414902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep Period Time Estimation Based on Electrodermal Activity.
    Hwang SH; Seo S; Yoon HN; Jung DW; Baek HJ; Cho J; Choi JW; Lee YJ; Jeong DU; Park KS
    IEEE J Biomed Health Inform; 2017 Jan; 21(1):115-122. PubMed ID: 26469790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation Analysis of Different Measurement Places of Galvanic Skin Response in Test Groups Facing Pleasant and Unpleasant Stimuli.
    Sanchez-Comas A; Synnes K; Molina-Estren D; Troncoso-Palacio A; Comas-González Z
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EDA-gram: designing electrodermal activity fingerprints for visualization and feature extraction.
    Chaspari T; Tsiartas A; Stein Duker LI; Cermak SA; Narayanan SS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():403-406. PubMed ID: 28268358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between sympathetic nervous activity and cerebral hemodynamics and oxygenation: a study using skin conductance measurement and functional near-infrared spectroscopy.
    Holper L; Scholkmann F; Wolf M
    Behav Brain Res; 2014 Aug; 270():95-107. PubMed ID: 24845305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.