These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29990257)

  • 1. Automatic Estimation of Fetal Abdominal Circumference From Ultrasound Images.
    Jang J; Park Y; Kim B; Lee SM; Kwon JY; Seo JK
    IEEE J Biomed Health Inform; 2018 Sep; 22(5):1512-1520. PubMed ID: 29990257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine-learning-based automatic identification of fetal abdominal circumference from ultrasound images.
    Kim B; Kim KC; Park Y; Kwon JY; Jang J; Seo JK
    Physiol Meas; 2018 Oct; 39(10):105007. PubMed ID: 30226815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decision Fusion-Based Fetal Ultrasound Image Plane Classification Using Convolutional Neural Networks.
    Sridar P; Kumar A; Quinton A; Nanan R; Kim J; Krishnakumar R
    Ultrasound Med Biol; 2019 May; 45(5):1259-1273. PubMed ID: 30826153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fetal abdominal contour extraction and measurement in ultrasound images.
    Yu J; Wang Y; Chen P; Shen Y
    Ultrasound Med Biol; 2008 Feb; 34(2):169-82. PubMed ID: 17935873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks.
    Chen H; Ni D; Qin J; Li S; Yang X; Wang T; Heng PA
    IEEE J Biomed Health Inform; 2015 Sep; 19(5):1627-36. PubMed ID: 25910262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FUIQA: Fetal Ultrasound Image Quality Assessment With Deep Convolutional Networks.
    Wu L; Cheng JZ; Li S; Lei B; Wang T; Ni D
    IEEE Trans Cybern; 2017 May; 47(5):1336-1349. PubMed ID: 28362600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Standard plane localization in ultrasound by radial component model and selective search.
    Ni D; Yang X; Chen X; Chin CT; Chen S; Heng PA; Li S; Qin J; Wang T
    Ultrasound Med Biol; 2014 Nov; 40(11):2728-42. PubMed ID: 25220278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Deep Convolutional Neural Network-Based Framework for Automatic Fetal Facial Standard Plane Recognition.
    Yu Z; Tan EL; Ni D; Qin J; Chen S; Li S; Lei B; Wang T
    IEEE J Biomed Health Inform; 2018 May; 22(3):874-885. PubMed ID: 28534800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated ultrasonographic measurement of basic fetal growth parameters.
    Pashaj S; Merz E; Petrela E
    Ultraschall Med; 2013 Apr; 34(2):137-44. PubMed ID: 23129519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deep Learning Solution for Automatic Fetal Neurosonographic Diagnostic Plane Verification Using Clinical Standard Constraints.
    Yaqub M; Kelly B; Papageorghiou AT; Noble JA
    Ultrasound Med Biol; 2017 Dec; 43(12):2925-2933. PubMed ID: 28958729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automating the Human Action of First-Trimester Biometry Measurement from Real-World Freehand Ultrasound.
    Yasrab R; Zhao H; Fu Z; Drukker L; Papageorghiou AT; Noble JA
    Ultrasound Med Biol; 2024 Jun; 50(6):805-816. PubMed ID: 38467521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-task learning for quality assessment of fetal head ultrasound images.
    Lin Z; Li S; Ni D; Liao Y; Wen H; Du J; Chen S; Wang T; Lei B
    Med Image Anal; 2019 Dec; 58():101548. PubMed ID: 31525671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Difference of Gaussians revolved along elliptical paths for ultrasound fetal head segmentation.
    Foi A; Maggioni M; Pepe A; Rueda S; Noble JA; Papageorghiou AT; Tohka J
    Comput Med Imaging Graph; 2014 Dec; 38(8):774-84. PubMed ID: 25450760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnostic Value of Prenatal Ultrasound Parameters and Esophageal Signs in Pouch and Lower Thoracic Segment in Fetuses with Esophageal Atresia.
    Feng W
    Comput Math Methods Med; 2021; 2021():8107461. PubMed ID: 34976113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic fetal biometry prediction using a novel deep convolutional network architecture.
    Ghelich Oghli M; Shabanzadeh A; Moradi S; Sirjani N; Gerami R; Ghaderi P; Sanei Taheri M; Shiri I; Arabi H; Zaidi H
    Phys Med; 2021 Aug; 88():127-137. PubMed ID: 34242884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated 3D ultrasound image analysis for first trimester assessment of fetal health.
    Ryou H; Yaqub M; Cavallaro A; Papageorghiou AT; Alison Noble J
    Phys Med Biol; 2019 Sep; 64(18):185010. PubMed ID: 31408850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree.
    Carneiro G; Georgescu B; Good S; Comaniciu D
    IEEE Trans Med Imaging; 2008 Sep; 27(9):1342-55. PubMed ID: 18753047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Segmentation of Fetal Ultrasound Images Using Feature Attention Supervised Network.
    Liu P; Zhao H; Li P
    Ultrasound Q; 2021 Sep; 37(3):278-286. PubMed ID: 34478428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Respiratory motion correction for free-breathing 3D abdominal MRI using CNN-based image registration: a feasibility study.
    Lv J; Yang M; Zhang J; Wang X
    Br J Radiol; 2018 Feb; 91(1083):20170788. PubMed ID: 29261334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volumetric (3D) imaging reduces inter- and intraobserver variation of fetal biometry measurements.
    Chan LW; Fung TY; Leung TY; Sahota DS; Lau TK
    Ultrasound Obstet Gynecol; 2009 Apr; 33(4):447-52. PubMed ID: 19277977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.