These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 29990267)

  • 1. High-Performance Mixed-Signal Neurocomputing With Nanoscale Floating-Gate Memory Cell Arrays.
    Merrikh-Bayat F; Guo X; Klachko M; Prezioso M; Likharev KK; Strukov DB
    IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):4782-4790. PubMed ID: 29990267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilevel MoS
    Kim SH; Yi SG; Park MU; Lee C; Kim M; Yoo KH
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25306-25312. PubMed ID: 31268292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Floating Gate Memory with U-Shape Recessed Channel for Neuromorphic Computing and MCU Applications.
    Gan LR; Wang YR; Chen L; Zhu H; Sun QQ
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31450802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Floating-Gate Electric-Double-Layer Organic Transistor for Neuromorphic Computing.
    Zheng C; Liao Y; Wang J; Zhou Y; Han ST
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):57102-57112. PubMed ID: 36516355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization.
    Mahmoodi MR; Prezioso M; Strukov DB
    Nat Commun; 2019 Nov; 10(1):5113. PubMed ID: 31704925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic nonvolatile memory transistors for flexible sensor arrays.
    Sekitani T; Yokota T; Zschieschang U; Klauk H; Bauer S; Takeuchi K; Takamiya M; Sakurai T; Someya T
    Science; 2009 Dec; 326(5959):1516-9. PubMed ID: 20007895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High performance organic nonvolatile flash memory transistors with high-resolution reduced graphene oxide patterns as a floating gate.
    Chung DS; Lee SM; Back JY; Kwon SK; Kim YH; Chang ST
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9524-9. PubMed ID: 24846849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the Carrier Injection Efficiency in 3D Nanocrystalline Silicon Floating Gate Memory by Novel Design of Control Layer.
    Hu H; Ma Z; Yu X; Chen T; Zhou C; Li W; Chen K; Xu J; Xu L
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit.
    Brink S; Nease S; Hasler P
    Neural Netw; 2013 Sep; 45():39-49. PubMed ID: 23541925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Synaptic Emulators Based on MoS
    Yi SG; Park MU; Kim SH; Lee CJ; Kwon J; Lee GH; Yoo KH
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31480-31487. PubMed ID: 30105909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonvolatile Transistor Memory with Self-Assembled Semiconducting Polymer Nanodomain Floating Gates.
    Wang W; Kim KL; Cho SM; Lee JH; Park C
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33863-33873. PubMed ID: 27960399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hardware Realization of the Pattern Recognition with an Artificial Neuromorphic Device Exhibiting a Short-Term Memory.
    Przyczyna D; Lis M; Pilarczyk K; SzaciƂowski K
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31357695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Memory Window Overestimation of 2D Materials Based Floating Gate Type Memory Devices by Measuring Floating Gate Voltage.
    Sasaki T; Ueno K; Taniguchi T; Watanabe K; Nishimura T; Nagashio K
    Small; 2020 Nov; 16(47):e2004907. PubMed ID: 33140573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Nonvolatile Transistor Memory with Solution-Processed Transition Metal Dichalcogenides.
    Kim RH; Lee J; Kim KL; Cho SM; Kim DH; Park C
    Small; 2017 May; 13(20):. PubMed ID: 28371305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of charges stored in the floating gate of flash memory by scanning nonlinear dielectric microscopy.
    Honda K; Hashimoto S; Cho Y
    Nanotechnology; 2006 Apr; 17(7):S185-8. PubMed ID: 21727412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-Inspired Hardware Solutions for Inference in Bayesian Networks.
    Bagheriye L; Kwisthout J
    Front Neurosci; 2021; 15():728086. PubMed ID: 34924925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications.
    Liu C; Yan X; Song X; Ding S; Zhang DW; Zhou P
    Nat Nanotechnol; 2018 May; 13(5):404-410. PubMed ID: 29632398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing.
    Fuller EJ; Keene ST; Melianas A; Wang Z; Agarwal S; Li Y; Tuchman Y; James CD; Marinella MJ; Yang JJ; Salleo A; Talin AA
    Science; 2019 May; 364(6440):570-574. PubMed ID: 31023890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromorphic Spintronics.
    Grollier J; Querlioz D; Camsari KY; Everschor-Sitte K; Fukami S; Stiles MD
    Nat Electron; 2020; 3(7):. PubMed ID: 33367204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Future prospects of NAND flash memory technology--the evolution from floating gate to charge trapping to 3D stacking.
    Lu CY
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7604-18. PubMed ID: 23421122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.