These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29990308)

  • 1. Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review.
    Collins L; Kilpatrick JI; Kalinin SV; Rodriguez BJ
    Rep Prog Phys; 2018 Aug; 81(8):086101. PubMed ID: 29990308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing charge screening dynamics and electrochemical processes at the solid-liquid interface with electrochemical force microscopy.
    Collins L; Jesse S; Kilpatrick JI; Tselev A; Varenyk O; Okatan MB; Weber SA; Kumar A; Balke N; Kalinin SV; Rodriguez BJ
    Nat Commun; 2014 May; 5():3871. PubMed ID: 24846328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kelvin probe force microscopy in liquid using electrochemical force microscopy.
    Collins L; Jesse S; Kilpatrick JI; Tselev A; Okatan MB; Kalinin SV; Rodriguez BJ
    Beilstein J Nanotechnol; 2015; 6():201-14. PubMed ID: 25671164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space.
    Collins L; Belianinov A; Somnath S; Balke N; Kalinin SV; Jesse S
    Sci Rep; 2016 Aug; 6():30557. PubMed ID: 27514987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Mapping of the Double Layer Potential at the Graphene-Electrolyte Interface.
    Strelcov E; Arble C; Guo H; Hoskins BD; Yulaev A; Vlassiouk IV; Zhitenev NB; Tselev A; Kolmakov A
    Nano Lett; 2020 Feb; 20(2):1336-1344. PubMed ID: 31990570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and Kelvin probe force microscopy: unraveling electronic processes in complex materials.
    Liscio A; Palermo V; Samorì P
    Acc Chem Res; 2010 Apr; 43(4):541-50. PubMed ID: 20058907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors.
    Yuan H; Shimotani H; Ye J; Yoon S; Aliah H; Tsukazaki A; Kawasaki M; Iwasa Y
    J Am Chem Soc; 2010 Dec; 132(51):18402-7. PubMed ID: 21141862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially Resolved Carrier Dynamics at MAPbBr
    Ahmadi M; Collins L; Higgins K; Kim D; Lukosi E; Kalinin SV
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41551-41560. PubMed ID: 31595742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AC Kelvin Probe Force Microscopy Enables Charge Mapping in Water.
    Hackl T; Schitter G; Mesquida P
    ACS Nano; 2022 Nov; 16(11):17982-17990. PubMed ID: 36215653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a liquid flow on the forces between charged solid surfaces and the non-equilibrium electric double layer.
    McNamee CE
    Adv Colloid Interface Sci; 2019 Apr; 266():21-33. PubMed ID: 30831437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform.
    Collins L; Ahmadi M; Wu T; Hu B; Kalinin SV; Jesse S
    ACS Nano; 2017 Sep; 11(9):8717-8729. PubMed ID: 28780850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time resolved surface photovoltage measurements using a big data capture approach to KPFM.
    Collins L; Ahmadi M; Qin J; Liu Y; Ovchinnikova OS; Hu B; Jesse S; Kalinin SV
    Nanotechnology; 2018 Nov; 29(44):445703. PubMed ID: 30084391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing defects and transport in Si nanowire devices using Kelvin probe force microscopy.
    Bae SS; Prokopuk N; Quitoriano NJ; Adams SM; Ragan R
    Nanotechnology; 2012 Oct; 23(40):405706. PubMed ID: 22995919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection.
    Collins L; Okatan MB; Li Q; Kravenchenko II; Lavrik NV; Kalinin SV; Rodriguez BJ; Jesse S
    Nanotechnology; 2015 May; 26(17):175707. PubMed ID: 25851168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially Resolved Probing of Electrochemical Reactions via Energy Discovery Platforms.
    Ding J; Strelcov E; Kalinin SV; Bassiri-Gharb N
    Nano Lett; 2015 Jun; 15(6):3669-76. PubMed ID: 26027805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices.
    Axt A; Hermes IM; Bergmann VW; Tausendpfund N; Weber SAL
    Beilstein J Nanotechnol; 2018; 9():1809-1819. PubMed ID: 29977714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulsed Force Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Xu XG
    ACS Nano; 2020 Apr; 14(4):4839-4848. PubMed ID: 32283008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface potential modeling and reconstruction in Kelvin probe force microscopy.
    Xu J; Wu Y; Li W; Xu J
    Nanotechnology; 2017 Sep; 28(36):365705. PubMed ID: 28664875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy.
    Biglarbeigi P; Morelli A; Pauly S; Yu Z; Jiang W; Sharma S; Finlay D; Kumar A; Soin N; Payam AF
    ACS Nano; 2023 Nov; 17(21):21506-21517. PubMed ID: 37877266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative comparison of closed-loop and dual harmonic Kelvin probe force microscopy techniques.
    Kilpatrick JI; Collins L; Weber SAL; Rodriguez BJ
    Rev Sci Instrum; 2018 Dec; 89(12):123708. PubMed ID: 30599628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.