These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 2999037)
1. Neutron spectrum measurements at a 40-MeV proton cyclotron. Birattari C; Salomone A Health Phys; 1985 Nov; 49(5):919-36. PubMed ID: 2999037 [TBL] [Abstract][Full Text] [Related]
2. Development of a quasi-monoenergetic neutron field using the 7Li(p,n)7Be reaction in the energy range from 250 to 390 MeV at RCNP. Taniguchi S; Nakao N; Nakamura T; Yashima H; Iwamoto Y; Satoh D; Nakane Y; Nakashima H; Itoga T; Tamii A; Hatanaka K Radiat Prot Dosimetry; 2007; 126(1-4):23-7. PubMed ID: 17502318 [TBL] [Abstract][Full Text] [Related]
3. Study of boron neutron capture therapy used neutron source with protons bombarding a thick 9Be target. Yue G; Chen J; Song R Med Phys; 1997 Jun; 24(6):851-5. PubMed ID: 9198018 [TBL] [Abstract][Full Text] [Related]
4. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators. Hsu YC; Lai BL; Sheu RJ Radiat Prot Dosimetry; 2016 Jan; 168(1):124-33. PubMed ID: 25628454 [TBL] [Abstract][Full Text] [Related]
5. Calculations of neutron shielding data for 10-100 MeV proton accelerators. Chen CC; Sheu RJ; Jian SH Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):245-51. PubMed ID: 16604637 [TBL] [Abstract][Full Text] [Related]
6. Study of the neutron field in the vicinity of an unshielded PET cyclotron. Méndez R; Iñiguez MP; Martí-Climent JM; Peñuelas I; Vega-Carrillo HR; Barquero R Phys Med Biol; 2005 Nov; 50(21):5141-52. PubMed ID: 16237246 [TBL] [Abstract][Full Text] [Related]
7. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy. Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968 [TBL] [Abstract][Full Text] [Related]
8. Measurement of neutron leakage spectra at a 500-MeV proton accelerator. Moritz LE Health Phys; 1989 Mar; 56(3):287-96. PubMed ID: 2537266 [TBL] [Abstract][Full Text] [Related]
9. Measurements of the neutron activation cross sections for Bi and Co at 386 MeV. Yashima H; Sekimoto S; Ninomiya K; Kasamatsu Y; Shima T; Takahashi N; Shinohara A; Matsumura H; Satoh D; Iwamoto Y; Hagiwara M; Nishiizumi K; Caffee MW; Shibata S Radiat Prot Dosimetry; 2014 Oct; 161(1-4):139-43. PubMed ID: 24368868 [TBL] [Abstract][Full Text] [Related]
10. Validation of selected (n,2n) dosimetry reactions in IRDFF-1.05 library. Schulc M; Košťál M; Capote R; Novák E; Šimon J; Burianová N; Wallner A Appl Radiat Isot; 2019 Jan; 143():132-140. PubMed ID: 30415144 [TBL] [Abstract][Full Text] [Related]
11. Thick beryllium target as an epithermal neutron source for neutron capture therapy. Wang CK; Moore BR Med Phys; 1994 Oct; 21(10):1633-8. PubMed ID: 7869996 [TBL] [Abstract][Full Text] [Related]
12. Measurement of total body nitrogen and oxygen by irradiation with cyclotron neutrons and 'delayed' gamma ray counting. Spinks TJ; Goode AW; Ranicar AS; Steere E Phys Med Biol; 1984 Apr; 29(4):385-94. PubMed ID: 6718490 [TBL] [Abstract][Full Text] [Related]
13. Installation and application of an intense 7Li(p,n) neutron source for 20-90 MeV region. Baba M; Okamura H; Hagiwara M; Itoga T; Kamada S; Yahagi Y; Ibe E Radiat Prot Dosimetry; 2007; 126(1-4):13-7. PubMed ID: 17517671 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of the neutron field in the KEK counter hall. Moritz LE; Suzuki T; Noguchi M; Oki Y; Miura T; Miura S; Tawara H; Ban S; Hirayama H; Kondo K Health Phys; 1990 Apr; 58(4):487-92. PubMed ID: 2157684 [TBL] [Abstract][Full Text] [Related]
15. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick ⁹Be target and estimation of neutron yields. Paul S; Sahoo GS; Tripathy SP; Sharma SC; Ramjilal ; Ninawe NG; Sunil C; Gupta AK; Bandyopadhyay T Rev Sci Instrum; 2014 Jun; 85(6):063501. PubMed ID: 24985813 [TBL] [Abstract][Full Text] [Related]
16. CROSS SECTIONS MEASURED BY QUASI-MONOENERGETIC NEUTRONS. Majerle M; Ansorge M; Bém P; Novák J; Šimecková E; Štefánik M Radiat Prot Dosimetry; 2018 Aug; 180(1-4):386-390. PubMed ID: 29474643 [TBL] [Abstract][Full Text] [Related]
17. Measurements of the response functions of a large size NE213 organic liquid scintillator for neutrons up to 800 MeV. Taniguchi S; Moriya T; Takada M; Hatanaka K; Wakasa T; Saito T Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):175-9. PubMed ID: 16604622 [TBL] [Abstract][Full Text] [Related]
18. ANDI-03: a genetic algorithm tool for the analysis of activation detector data to unfold high-energy neutron spectra. Mukherjee B Radiat Prot Dosimetry; 2004; 110(1-4):249-54. PubMed ID: 15353654 [TBL] [Abstract][Full Text] [Related]
19. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility. Aslam ; Waker AJ Radiat Prot Dosimetry; 2011 Feb; 143(2-4):467-70. PubMed ID: 21183541 [TBL] [Abstract][Full Text] [Related]
20. Cross section measurements for (n, 3n) reactions induced by 14.8 MeV neutrons. Li G; Pu Z; Kong X; Zhang F; Zhu X Appl Radiat Isot; 2002 May; 56(5):731-3. PubMed ID: 11993948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]