BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 29990502)

  • 1. UnSASPing Senescence: Unmasking Tumor Suppression?
    Schmitt CA
    Cancer Cell; 2018 Jul; 34(1):6-8. PubMed ID: 29990502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PTBP1-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells.
    Georgilis A; Klotz S; Hanley CJ; Herranz N; Weirich B; Morancho B; Leote AC; D'Artista L; Gallage S; Seehawer M; Carroll T; Dharmalingam G; Wee KB; Mellone M; Pombo J; Heide D; Guccione E; Arribas J; Barbosa-Morais NL; Heikenwalder M; Thomas GJ; Zender L; Gil J
    Cancer Cell; 2018 Jul; 34(1):85-102.e9. PubMed ID: 29990503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pro- and anti-tumorigenic functions of the senescence-associated secretory phenotype.
    Lau L; David G
    Expert Opin Ther Targets; 2019 Dec; 23(12):1041-1051. PubMed ID: 30616404
    [No Abstract]   [Full Text] [Related]  

  • 4. SASP: Tumor Suppressor or Promoter? Yes!
    Rao SG; Jackson JG
    Trends Cancer; 2016 Nov; 2(11):676-687. PubMed ID: 28741506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype.
    Malaquin N; Martinez A; Rodier F
    Exp Gerontol; 2016 Sep; 82():39-49. PubMed ID: 27235851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Senescence-Associated Secretory Phenotype: Critical Effector in Skin Cancer and Aging.
    Ghosh K; Capell BC
    J Invest Dermatol; 2016 Nov; 136(11):2133-2139. PubMed ID: 27543988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polypyrimidine tract-binding protein 1 regulates the alternative splicing of dopamine receptor D2.
    Sasabe T; Futai E; Ishiura S
    J Neurochem; 2011 Jan; 116(1):76-81. PubMed ID: 21054383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High expression of PTBP1 promote invasion of colorectal cancer by alternative splicing of cortactin.
    Wang ZN; Liu D; Yin B; Ju WY; Qiu HZ; Xiao Y; Chen YJ; Peng XZ; Lu CM
    Oncotarget; 2017 May; 8(22):36185-36202. PubMed ID: 28404950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Potential of Senescence as a Target for Developing Anticancer Therapy.
    Jo H; Shim K; Jeoung D
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular senescence and tumor promotion: Is aging the key?
    Loaiza N; Demaria M
    Biochim Biophys Acta; 2016 Apr; 1865(2):155-67. PubMed ID: 26845683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Senescence and tumor suppression.
    Hinds P; Pietruska J
    F1000Res; 2017; 6():2121. PubMed ID: 29263785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line.
    Ortiz-Montero P; Londoño-Vallejo A; Vernot JP
    Cell Commun Signal; 2017 May; 15(1):17. PubMed ID: 28472950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melatonin regulates PARP1 to control the senescence-associated secretory phenotype (SASP) in human fetal lung fibroblast cells.
    Yu S; Wang X; Geng P; Tang X; Xiang L; Lu X; Li J; Ruan Z; Chen J; Xie G; Wang Z; Ou J; Peng Y; Luo X; Zhang X; Dong Y; Pang X; Miao H; Chen H; Liang H
    J Pineal Res; 2017 Aug; 63(1):. PubMed ID: 28247536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Induction of robust senescence-associated secretory phenotype in mouse NIH-3T3 cells by mitomycin C].
    Huang WX; Guo XX; Peng ZZ; Weng CL; Huang CY; Shi BY; Yang J; Liao XX; Li XY; Zheng HL; Liu XG; Sun XR
    Sheng Li Xue Bao; 2017 Feb; 69(1):33-40. PubMed ID: 28217805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of RNA binding motif protein 4-regulated splicing cascade on the progression and metabolism of colorectal cancer cells.
    Liang YC; Lin WC; Lin YJ; Lin JC
    Oncotarget; 2015 Nov; 6(35):38046-60. PubMed ID: 26506517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular Senescence: A Translational Perspective.
    Kirkland JL; Tchkonia T
    EBioMedicine; 2017 Jul; 21():21-28. PubMed ID: 28416161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation and functional significance of CDC42 alternative splicing in ovarian cancer.
    He X; Yuan C; Yang J
    Oncotarget; 2015 Oct; 6(30):29651-63. PubMed ID: 26336992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging role of extracellular vesicles as a senescence-associated secretory phenotype: Insights into the pathophysiology of lung diseases.
    Kadota T; Fujita Y; Yoshioka Y; Araya J; Kuwano K; Ochiya T
    Mol Aspects Med; 2018 Apr; 60():92-103. PubMed ID: 29146100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unmasking Transcriptional Heterogeneity in Senescent Cells.
    Hernandez-Segura A; de Jong TV; Melov S; Guryev V; Campisi J; Demaria M
    Curr Biol; 2017 Sep; 27(17):2652-2660.e4. PubMed ID: 28844647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholangiocyte senescence caused by lysophosphatidylcholine as a potential implication in carcinogenesis.
    Shimizu R; Kanno K; Sugiyama A; Ohata H; Araki A; Kishikawa N; Kimura Y; Yamamoto H; Kodama M; Kihira K; Tazuma S
    J Hepatobiliary Pancreat Sci; 2015 Sep; 22(9):675-82. PubMed ID: 25921542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.