These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 29990536)

  • 1. Fluorescent probes for the detection of catalytic Fe(II) ion.
    Hirayama T
    Free Radic Biol Med; 2019 Mar; 133():38-45. PubMed ID: 29990536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The intracellular iron sensor calcein is catalytically oxidatively degraded by iron(II) in a hydrogen peroxide-dependent reaction.
    Hasinoff BB
    J Inorg Biochem; 2003 Jun; 95(2-3):157-64. PubMed ID: 12763660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction.
    Pláteník J; Stopka P; Vejrazka M; Stípek S
    Free Radic Res; 2001 May; 34(5):445-59. PubMed ID: 11378528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Development and applications of Fe(II)-selective fluorescent probes].
    Hirayama T
    Nihon Yakurigaku Zasshi; 2019; 154(6):322-326. PubMed ID: 31787684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic and ESR investigation of iron(II) oxalate oxidation by hydrogen peroxide and dioxygen as a source of hydroxyl radicals.
    Park JS; Wood PM; Davies MJ; Gilbert BC; Whitwood AC
    Free Radic Res; 1997 Nov; 27(5):447-58. PubMed ID: 9518062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios.
    Fischbacher A; von Sonntag C; Schmidt TC
    Chemosphere; 2017 Sep; 182():738-744. PubMed ID: 28531840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histological detection of catalytic ferrous iron with the selective turn-on fluorescent probe RhoNox-1 in a Fenton reaction-based rat renal carcinogenesis model.
    Mukaide T; Hattori Y; Misawa N; Funahashi S; Jiang L; Hirayama T; Nagasawa H; Toyokuni S
    Free Radic Res; 2014 Sep; 48(9):990-5. PubMed ID: 24580501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Free Radic Biol Med; 2015 Jan; 78():118-22. PubMed ID: 25451643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nitroxide Tempo inhibits hydroxyl radical production from the Fenton-like reaction of iron(II)-citrate with hydrogen peroxide.
    Shi F; Zhang P; Mao Y; Wang C; Zheng M; Zhao Z
    Biochem Biophys Res Commun; 2017 Jan; 483(1):159-164. PubMed ID: 28042034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arguments against the significance of the Fenton reaction contributing to signal pathways under in vivo conditions.
    Saran M; Michel C; Stettmaier K; Bors W
    Free Radic Res; 2000 Nov; 33(5):567-79. PubMed ID: 11200089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe(III) to Fe(II).
    Ruipérez F; Mujika JI; Ugalde JM; Exley C; Lopez X
    J Inorg Biochem; 2012 Dec; 117():118-23. PubMed ID: 23085591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Dihydroquercetin on Catalytic Activity of Iron (II) Ions in the Fenton Reaction.
    Babenkova IV; Osipov AN; Teselkin YO
    Bull Exp Biol Med; 2018 Jul; 165(3):347-350. PubMed ID: 30006874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron(II) and hydrogen peroxide detoxification by human H-chain ferritin. An EPR spin-trapping study.
    Zhao G; Arosio P; Chasteen ND
    Biochemistry; 2006 Mar; 45(10):3429-36. PubMed ID: 16519538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence probing of the ferric Fenton reaction via novel chelation.
    Murale DP; Manjare ST; Lee YS; Churchill DG
    Chem Commun (Camb); 2014 Jan; 50(3):359-61. PubMed ID: 24247302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl radical production by H2O2-mediated oxidation of Fe(II) complexed by Suwannee River fulvic acid under circumneutral freshwater conditions.
    Miller CJ; Rose AL; Waite TD
    Environ Sci Technol; 2013 Jan; 47(2):829-35. PubMed ID: 23231429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.
    Kurtz DM
    J Inorg Biochem; 2006 Apr; 100(4):679-93. PubMed ID: 16504301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristic bleaching profiles of cyanine dyes depending on active oxygen species in the controlled Fenton reaction.
    Nakagawa Y; Hori H; Yamamoto I; Terada H
    Biol Pharm Bull; 1993 Nov; 16(11):1061-4. PubMed ID: 8312855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbonate-radical-anions, and not hydroxyl radicals, are the products of the Fenton reaction in neutral solutions containing bicarbonate.
    Illés E; Mizrahi A; Marks V; Meyerstein D
    Free Radic Biol Med; 2019 Feb; 131():1-6. PubMed ID: 30458276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X; Hanna K; Deng N
    J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intratumoral synthesis of nano-metalchelate for tumor catalytic therapy by ligand field-enhanced coordination.
    Yang B; Yao H; Tian H; Yu Z; Guo Y; Wang Y; Yang J; Chen C; Shi J
    Nat Commun; 2021 Jun; 12(1):3393. PubMed ID: 34099712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.