BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 29990581)

  • 1. Resting-state functional MRI studies on infant brains: A decade of gap-filling efforts.
    Zhang H; Shen D; Lin W
    Neuroimage; 2019 Jan; 185():664-684. PubMed ID: 29990581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development.
    Howell BR; Styner MA; Gao W; Yap PT; Wang L; Baluyot K; Yacoub E; Chen G; Potts T; Salzwedel A; Li G; Gilmore JH; Piven J; Smith JK; Shen D; Ugurbil K; Zhu H; Lin W; Elison JT
    Neuroimage; 2019 Jan; 185():891-905. PubMed ID: 29578031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A personalized cortical atlas for functional regions of interest.
    Molloy MF; Osher DE
    J Neurophysiol; 2023 Nov; 130(5):1067-1080. PubMed ID: 37727907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Basis of Large-Scale Functional Connectivity in the Mouse.
    Grandjean J; Zerbi V; Balsters JH; Wenderoth N; Rudin M
    J Neurosci; 2017 Aug; 37(34):8092-8101. PubMed ID: 28716961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of graph analysis of resting state fMRI using test-retest dataset from the Human Connectome Project.
    Termenon M; Jaillard A; Delon-Martin C; Achard S
    Neuroimage; 2016 Nov; 142():172-187. PubMed ID: 27282475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-year development of modules and hubs in infant brain functional networks.
    Wen X; Zhang H; Li G; Liu M; Yin W; Lin W; Zhang J; Shen D
    Neuroimage; 2019 Jan; 185():222-235. PubMed ID: 30315911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resting-state network mapping in neurosurgical practice: a review.
    Hacker CD; Roland JL; Kim AH; Shimony JS; Leuthardt EC
    Neurosurg Focus; 2019 Dec; 47(6):E15. PubMed ID: 31786561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines.
    Kopal J; Pidnebesna A; Tomeček D; Tintěra J; Hlinka J
    Hum Brain Mapp; 2020 Dec; 41(18):5325-5340. PubMed ID: 32881215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra-session test-retest reliability of functional connectivity in infants.
    Wang Y; Hinds W; Duarte CS; Lee S; Monk C; Wall M; Canino G; Milani ACC; Jackowski A; Mamin MG; Foerster BU; Gingrich J; Weissman MM; Peterson BS; Semanek D; Perez EA; Labat E; Torres IB; Da Silva I; Parente C; Abdala N; Posner J
    Neuroimage; 2021 Oct; 239():118284. PubMed ID: 34147630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dyconnmap: Dynamic connectome mapping-A neuroimaging python module.
    Marimpis AD; Dimitriadis SI; Goebel R
    Hum Brain Mapp; 2021 Oct; 42(15):4909-4939. PubMed ID: 34250674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional connectivity in amygdalar-sensory/(pre)motor networks at rest: new evidence from the Human Connectome Project.
    Toschi N; Duggento A; Passamonti L
    Eur J Neurosci; 2017 May; 45(9):1224-1229. PubMed ID: 28231395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising.
    Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE
    Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity.
    Wirsich J; Ridley B; Besson P; Jirsa V; Bénar C; Ranjeva JP; Guye M
    Neuroimage; 2017 Nov; 161():251-260. PubMed ID: 28842386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Integration of Functional Brain Activity from Adolescence to Adulthood.
    Kundu P; Benson BE; Rosen D; Frangou S; Leibenluft E; Luh WM; Bandettini PA; Pine DS; Ernst M
    J Neurosci; 2018 Apr; 38(14):3559-3570. PubMed ID: 29487126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating the complementarity of resting-state networks derived from dynamic [
    Ionescu TM; Amend M; Hafiz R; Biswal BB; Wehrl HF; Herfert K; Pichler BJ
    Neuroimage; 2021 Aug; 236():118045. PubMed ID: 33848625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T-distribution stochastic neighbor embedding for fine brain functional parcellation on rs-fMRI.
    Hu Y; Li X; Wang L; Han B; Nie S
    Brain Res Bull; 2020 Sep; 162():199-207. PubMed ID: 32603775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resting-state networks of the neonate brain identified using independent component analysis.
    Rajasilta O; Tuulari JJ; Björnsdotter M; Scheinin NM; Lehtola SJ; Saunavaara J; Häkkinen S; Merisaari H; Parkkola R; Lähdesmäki T; Karlsson L; Karlsson H
    Dev Neurobiol; 2020 Mar; 80(3-4):111-125. PubMed ID: 32267069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability in Resting-State Functional Magnetic Resonance Imaging: The Effect of Body Mass, Blood Pressure, Hematocrit, and Glycated Hemoglobin on Hemodynamic and Neuronal Parameters.
    Sjuls GS; Specht K
    Brain Connect; 2022 Dec; 12(10):870-882. PubMed ID: 35473334
    [No Abstract]   [Full Text] [Related]  

  • 20. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease.
    Jie B; Liu M; Shen D
    Med Image Anal; 2018 Jul; 47():81-94. PubMed ID: 29702414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.