These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29990596)

  • 1. Electrode plate-culture methods for colony isolation of exoelectrogens from anode microbiomes.
    Ueoka N; Kouzuma A; Watanabe K
    Bioelectrochemistry; 2018 Dec; 124():1-6. PubMed ID: 29990596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell.
    Xu S; Liu H
    J Appl Microbiol; 2011 Nov; 111(5):1108-15. PubMed ID: 21854512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells.
    Kouzuma A; Kasai T; Nakagawa G; Yamamuro A; Abe T; Watanabe K
    PLoS One; 2013; 8(11):e77443. PubMed ID: 24223712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium chloride concentration determines exoelectrogens in anode biofilms occurring from mangrove-grown brackish sediment.
    Miyahara M; Kouzuma A; Watanabe K
    Bioresour Technol; 2016 Oct; 218():674-9. PubMed ID: 27420153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria.
    Yoshida N; Miyata Y; Doi K; Goto Y; Nagao Y; Tero R; Hiraishi A
    Sci Rep; 2016 Feb; 6():21867. PubMed ID: 26899353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil.
    Cabezas A; Pommerenke B; Boon N; Friedrich MW
    Environ Microbiol Rep; 2015 Jun; 7(3):489-97. PubMed ID: 25683328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors.
    Jung S; Regan JM
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):393-402. PubMed ID: 17786426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of PAH polluted soils using a soil microbial fuel cell: Influence of electrode interval and role of microbial community.
    Yu B; Tian J; Feng L
    J Hazard Mater; 2017 Aug; 336():110-118. PubMed ID: 28494298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harvesting electricity with Geobacter bremensis isolated from compost.
    Nercessian O; Parot S; Délia ML; Bergel A; Achouak W
    PLoS One; 2012; 7(3):e34216. PubMed ID: 22470538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Anodic Community in Microbial Fuel Cells with Iron Oxide-Reducing Community.
    Yokoyama H; Ishida M; Yamashita T
    J Microbiol Biotechnol; 2016 Apr; 26(4):757-62. PubMed ID: 26767577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide electrodeposited electrode enhances start-up and selective enrichment of exoelectrogens in bioelectrochemical systems.
    Alonso RM; San-Martín MI; Sotres A; Escapa A
    Sci Rep; 2017 Oct; 7(1):13726. PubMed ID: 29062127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphite electrodes as electron donors for anaerobic respiration.
    Gregory KB; Bond DR; Lovley DR
    Environ Microbiol; 2004 Jun; 6(6):596-604. PubMed ID: 15142248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional carbon-based anodes promoted the accumulation of exoelectrogens in bioelectrochemical systems.
    Wu Y; He G; Chen S; Wang Z
    Water Environ Res; 2020 Jul; 92(7):997-1005. PubMed ID: 31891435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling dark metabolism to electricity generation using photosynthetic cocultures.
    Badalamenti JP; Torres CI; Krajmalnik-Brown R
    Biotechnol Bioeng; 2014 Feb; 111(2):223-31. PubMed ID: 23893620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial fuel cell anodic microbial population dynamics during MFC start-up.
    Paitier A; Godain A; Lyon D; Haddour N; Vogel TM; Monier JM
    Biosens Bioelectron; 2017 Jun; 92():357-363. PubMed ID: 27836597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electric picnic: synergistic requirements for exoelectrogenic microbial communities.
    Kiely PD; Regan JM; Logan BE
    Curr Opin Biotechnol; 2011 Jun; 22(3):378-85. PubMed ID: 21441020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochar establishing syntrophic partnership between exoelectrogens to facilitate extracellular electron transfer.
    Wang G; Chen L; Xing Y; Sun C; Fu P; Li Q; Chen R
    Sci Total Environ; 2023 Dec; 904():166549. PubMed ID: 37633395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals.
    Kato S; Nakamura R; Kai F; Watanabe K; Hashimoto K
    Environ Microbiol; 2010 Dec; 12(12):3114-23. PubMed ID: 20561016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of inoculum and anode surface properties on the selection of Geobacter-dominated biofilms.
    Commault AS; Barrière F; Lapinsonnière L; Lear G; Bouvier S; Weld RJ
    Bioresour Technol; 2015 Nov; 195():265-72. PubMed ID: 26166461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell.
    Ishii S; Watanabe K; Yabuki S; Logan BE; Sekiguchi Y
    Appl Environ Microbiol; 2008 Dec; 74(23):7348-55. PubMed ID: 18836002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.