BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 29990599)

  • 1. Cell membrane electroporation modeling: A multiphysics approach.
    Goldberg E; Suárez C; Alfonso M; Marchese J; Soba A; Marshall G
    Bioelectrochemistry; 2018 Dec; 124():28-39. PubMed ID: 29990599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of Electroporation Detection Threshold on Cell Radius: An Explanation to Observations Non Compatible with Schwan's Equation Model.
    Mercadal B; Vernier PT; Ivorra A
    J Membr Biol; 2016 Oct; 249(5):663-676. PubMed ID: 27170140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of molecular uptake via electroporation.
    Li J; Lin H
    Bioelectrochemistry; 2011 Aug; 82(1):10-21. PubMed ID: 21621484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiphysics modelling of electroporation under uni- or bipolar nanosecond pulse sequences.
    Guo F; Qian K; Zhang L; Liu X; Peng H
    Bioelectrochemistry; 2021 Oct; 141():107878. PubMed ID: 34198114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination.
    Dermol J; Miklavčič D
    Bioelectrochemistry; 2014 Dec; 100():52-61. PubMed ID: 24731594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation.
    Vasilkoski Z; Esser AT; Gowrishankar TR; Weaver JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021904. PubMed ID: 17025469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment.
    Valic B; Golzio M; Pavlin M; Schatz A; Faurie C; Gabriel B; Teissié J; Rols MP; Miklavcic D
    Eur Biophys J; 2003 Sep; 32(6):519-28. PubMed ID: 12712266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells.
    Pucihar G; Miklavcic D; Kotnik T
    IEEE Trans Biomed Eng; 2009 May; 56(5):1491-501. PubMed ID: 19203876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling a Conventional Electroporation Pulse Train: Decreased Pore Number, Cumulative Calcium Transport and an Example of Electrosensitization.
    Son RS; Gowrishankar TR; Smith KC; Weaver JC
    IEEE Trans Biomed Eng; 2016 Mar; 63(3):571-80. PubMed ID: 26302502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroporation of DC-3F cells is a dual process.
    Wegner LH; Frey W; Silve A
    Biophys J; 2015 Apr; 108(7):1660-1671. PubMed ID: 25863058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of extracellular conductivity on electroporation-mediated molecular delivery.
    Li J; Tan W; Yu M; Lin H
    Biochim Biophys Acta; 2013 Feb; 1828(2):461-70. PubMed ID: 22954677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma membrane depolarization and permeabilization due to electric pulses in cell lines of different excitability.
    Dermol-Černe J; Miklavčič D; Reberšek M; Mekuč P; Bardet SM; Burke R; Arnaud-Cormos D; Leveque P; O'Connor R
    Bioelectrochemistry; 2018 Aug; 122():103-114. PubMed ID: 29621662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of cell membrane permeability induced by monopolar and high-frequency bipolar bursts of electrical pulses.
    Sweeney DC; Reberšek M; Dermol J; Rems L; Miklavčič D; Davalos RV
    Biochim Biophys Acta; 2016 Nov; 1858(11):2689-2698. PubMed ID: 27372268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling electroporation in a single cell.
    Krassowska W; Filev PD
    Biophys J; 2007 Jan; 92(2):404-17. PubMed ID: 17056739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled mathematical modeling of cisplatin electroporation.
    Goldberg E; Soba A; Gandía D; Fernández ML; Suárez C
    Bioelectrochemistry; 2021 Aug; 140():107788. PubMed ID: 33838515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency electroporation efficiency is under control of membrane capacitive charging and voltage potential relaxation.
    Novickij V; Ruzgys P; Grainys A; Šatkauskas S
    Bioelectrochemistry; 2018 Feb; 119():92-97. PubMed ID: 28922628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses.
    Joshi RP; Hu Q; Aly R; Schoenbach KH; Hjalmarson HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011913. PubMed ID: 11461294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of Electroporation Induced by Pulsed Electric Fields in Irregularly Shaped Cells.
    Mescia L; Chiapperino MA; Bia P; Gielis J; Caratelli D
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):414-423. PubMed ID: 29346108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical modeling of the influence of medium conductivity on electroporation.
    Ivorra A; Villemejane J; Mir LM
    Phys Chem Chem Phys; 2010 Sep; 12(34):10055-64. PubMed ID: 20585676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The second phase of bipolar, nanosecond-range electric pulses determines the electroporation efficiency.
    Pakhomov AG; Grigoryev S; Semenov I; Casciola M; Jiang C; Xiao S
    Bioelectrochemistry; 2018 Aug; 122():123-133. PubMed ID: 29627664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.